
TCP/IP for MVS, VM, OS/2 and DOS
X Window System Guide

Document Number GG24-3911-01

July 1994

International Technical Support Organization
Raleigh Center

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xv.

Second Edition (July 1994)

This edition applies to:

• Version 2.2.1 of IBM TCP/IP for MVS, Program Number 5735-HAL for use with the MVS Operating System
• Version 2.2 of IBM TCP/IP for VM, Program Number 5735-FAL for use with the VM Operating System
• Version 1.2.5 of IBM AIXwindows Environment/6000, Program Number 5601-257 for use with AIX Version 3.2.5

for the RISC System/6000
• Version 2.0 of IBM TCP/IP for OS/2, Program Number 5622-086 for use with the OS/2 Operating System
• Version 2.1.1 of IBM TCP/IP for DOS, Program Number 5621-219, and Version 3.3 of HCL-eXceed/DOS for use

with the DOS Operating System.
• Version 2.1.1 of IBM TCP/IP for DOS, Program Number 5621-219, and Version 3.3.3 of HCL-eXceed/W for use

with the DOS Operating System and Microsoft Windows.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for readers ′ feedback appears facing Chapter 1. If this form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Center
Dept. 545, Building 657
P.O. Box 12195
Research Triangle Park, NC 27709

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1992, 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

The purpose of this document is to provide information pertinent to the
implementation of the X Window Systems for TCP/IP under MVS, VM, AIX/6000,
OS/2 and DOS.

The document focuses on how to customize and use the X Window Systems
provided by the following products:

• IBM TCP/IP Version 2.2.1 for MVS
• IBM TCP/IP Version 2.2 for VM
• IBM AIXwindows Environment/6000 Version 1.2.5
• IBM TCP/IP Version 2.0 for OS/2
• HCL-eXceed/DOS Version 3.3 with TCP/IP Version 2.1.1 for DOS
• HCL-eXceed/W Version 3.3.3 with TCP/IP Version 2.1.1 for DOS

The intended audience for this document are customers and IBM system
engineers who will evaluate and implement X Windows on one or more of the
above platforms. It is assumed that the reader has a working knowledge of
TCP/IP and each of the operating systems listed above.

(195 pages)

 Copyright IBM Corp. 1992, 1994 iii

iv X Window System Guide

Contents

Abstract . i i i

Special Notices . xv

Preface . xvii

Related Publications . xix
Prerequisite Publications . xix
Additional Publications . xix
International Technical Support Center Publications xx

Acknowledgements . xxi

Chapter 1. Introduction . 1
1.1 A Brief History . 1
1.2 X Concepts . 2

1.2.1 Client/Server . 2
1.2.2 Client . 3
1.2.3 Server . 4
1.2.4 X Networking . 6
1.2.5 Fonts . 7
1.2.6 Colors . 9
1.2.7 Keyboard . 11

1.3 IBM X Window System Implementations . 11
1.3.1 MVS . 11
1.3.2 VM . 15
1.3.3 AIX/6000 . 18
1.3.4 OS/2 . 20
1.3.5 DOS . 24

Chapter 2. Installation . 25
2.1 ITSO Network Configuration . 25
2.2 MVS . 25

2.2.1 Installation Verification for the MVS X Window System API 26
2.2.2 Installing the MVS X Window System GDDM Interface 28

2.3 VM . 31
2.3.1 Installation Verification for the VM X Window System API 31
2.3.2 Installing the VM X Window System GDDM Interface 33

2.4 AIX . 38
2.4.1 Basic Installation . 39
2.4.2 AIXwindows Environment/6000 Images 41

2.5 OS/2 . 42
2.5.1 Setting Up OS/2 X Window System Server 42
2.5.2 Installing PMX . 43
2.5.3 System Level . 44
2.5.4 Setting PMX to Start Automatically . 44
2.5.5 Setting Environment Variables . 45
2.5.6 Starting PMX . 46

2.6 Installing OS/2 X Window System Client and OS/2 OSF/Motif Kits 46
2.6.1 Requirements to Use X Window System Client and the OSF/Motif Kit 47
2.6.2 Installing the X Window System Client Files 47

 Copyright IBM Corp. 1992, 1994 v

2.6.3 Installing the Programmer ′s Toolkit . 47
2.6.4 Installing the OSF/Motif Kit Files . 48
2.6.5 Installing from a Code Server . 49

2.7 DOS . 50
2.7.1 Installation and Basic Configuration for HCL-eXceed/DOS 50
2.7.2 Installation and Basic Configuration for HCL-eXceed/W 53

Chapter 3. X Client Application Considerations 59
3.1 Under MVS . 59

3.1.1 Compiling and Link-Editing under MVS 60
3.1.2 MVS Application Resource File . 69
3.1.3 Using GDDM Applications under MVS 71

3.2 Under VM . 80
3.2.1 Compiling and Link-Editing Under VM 80
3.2.2 VM Application Resource File . 84
3.2.3 Using GDDM Applications under VM 87

3.3 Under AIX/6000 . 97
3.3.1 Compiling and Linking under AIX/6000 97
3.3.2 Customizing Application Resources under AIX/6000 99
3.3.3 How to Start an AIX/6000 Client . 101

3.4 Running OS/2 X Window Clients and OS/2 OSF/Motif Applications . . . 103
3.4.1 Application Resource File . 103
3.4.2 Running OS/2 X Window Clients and OSF/Motif Applications 105
3.4.3 Developing of X Window Client and OSF/Motif Applications 111
3.4.4 Tips for Porting Applications from UNIX 112

Chapter 4. Customizing the X Server . 113
4.1 AIX/6000 X Server . 113

4.1.1 AIXwindows Environment/6000 V1.2 113
4.1.2 Customizing Motif Window Manager 116
4.1.3 Customizing Colors . 120
4.1.4 AIX/6000 X Fonts . 122
4.1.5 Remapping the Keyboard Under AIX/6000 123
4.1.6 Controlling X Client Access to AIX/6000 125
4.1.7 Interoperability . 126

4.2 Customizing PMX . 126
4.2.1 Using the Configuration Notebook Program to Configure PMX . . . 126
4.2.2 Keyboard Definition . 127
4.2.3 Window Control . 131
4.2.4 Controlling X Client Access to OS/2 132
4.2.5 Cursor Options . 133
4.2.6 Customizing OS/2 Colors . 134
4.2.7 OS/2 X Fonts . 138
4.2.8 Using the PM Clipboard with PMX . 146
4.2.9 Other Options . 148

4.3 DOS . 149
4.3.1 Customizing HCL-eXceed/W for Windows Version 3.3.3 149
4.3.2 Customizing HCL-eXceed/DOS for DOS 153

Chapter 5. Multivendor Interoperability . 157
5.1 Hewlett-Packard . 157

5.1.1 Hewlett-Packard as a Client . 157
5.1.2 Hewlett-Packard as an X Server . 159

Appendix A. MVS C/370 Catalogued Procedures 163

vi X Window System Guide

A.1 C/370 Compiler Catalogued Procedure EDCC 163
A.2 C/370 Linkage Editor Catalogued Procedure EDCL 165

Appendix B. Supplied Application Resource File Definitions for XCALC . . 167

Appendix C. Information on Zapping the VM GXDEMOx Programs 177

Appendix D. Standard X Client Applications 179

Appendix E. XEDIT Subcommands . 183

Glossary . 187

Index . 189

Contents vii

viii X Window System Guide

Figures

 1. The Components of an X Window System 3
 2. An Example of the XLFD Font Description Convention 8
 3. MVS X Window System API . 13
 4. VM X Window System API . 16
 5. The Components of X . 19
 6. X Window Application Layers . 23
 7. Component of the Network Configuration at the ITSO Raleigh 25
 8. Display at an OS/2 X Server for XSAMP1 Sample X Client Program . . 27
 9. Display at an OS/2 X Server for XSAMP2 Sample X Client Program . . 27
10. Display at an OS/2 X Server for XSAMP3 Sample X Client Program . . 27
11. Example of the Contents of userid.XWINDOWS.DISPLAY Data Set 27
12. Example of the STEPLIB CLIST for the X Window System GDDM

Interface . 29
13. Display at an OS/2 X Server for the GXDEMO1 First Frame 30
14. Example of the Output from the Q NSS NAME Command on VM 35
15. Example of a Successful Run for INSTGDXD 36
16. SMIT Installation Menu . 40
17. Installing X Window Server . 44
18. Syslevel from Test Installation . 44
19. Automatic Startup from X Window System Server 45
20. The PMX Control Window . 46
21. Installing X Window System Client . 48
22. Installing X Window System Client . 49
23. System Maintenance Level from Test Installation 49
24. Telnet Session to AIX to Start X Client Application 52
25. Selected Installation Configuration . 55
26. HCL-eXceed/W Window . 56
27. HCL-eXceed/W Configuration Window . 56
28. Xstart . 57
29. Sample JCL to Compile XSAMP1 . 61
30. Sample JCL to Link-Edit XSAMP1 . 62
31. Sample JCL to Link-Edit XSAMP2 . 63
32. Sample JCL to Link-Edit XSAMP3 . 65
33. Sample JCL to Link-Edit XCALC . 67
34. Display at an OS/2 X Server for MIT XLOGO X Client Program 68
35. Display at an OS/2 X Server for MIT XCLOCK X Client Program 68
36. Display at an OS/2 X Server for MIT XCALC X Client Program 69
37. Example of the Contents of the Application Resource File for XLOGO . 70
38. An MVS X Window System GDDM Interface Window for ADMCHART . . 71
39. Example Application Resource File Entries for GDDM Applications . . . 73
40. Display at an OS/2 X Server for ADMCHART under MVS 74
41. Modified Application Resource File Entries for 8514 Display 75
42. Re-focused Display at an OS/2 X Server for ADMCHART 76
43. APL2 Character Set Indicator on at the X Server Window Title Bar . . . 77
44. X Client KEYCODE Display for the ALT BACKSPACE Key Sequence . . 78
45. Example of the Contents of tcpip.GDXAPLCS.MAP 78
46. Display at an OS/2 X Server for MIT BITMAP X Client Program 82
47. Example of the Contents of the Application Resource File for BITMAP . 86
48. Display at an OS/2 X Server for Modified MIT BITMAP X Client Program 87
49. Contents of the ZAP Input File ADMCHART ZAP 88
50. Example Application Resource File Entries for GDDM Applications . . . 92

 Copyright IBM Corp. 1992, 1994 ix

51. Display at an OS/2 X Server for ADMCHART under VM/CMS 93
52. Example of the Contents of GDXAPLCS MAP 95
53. Available Resources for aixterm . 102
54. Error Message: Not Authorized to Connect to Server 103
55. Error Message: X Server is Not Running 103
56. Error Message: X Server is Running, but Connection was Broken . . . 103
57. Entry of Xdefault . 104
58. Sample Output from XWININFO Command 108
59. Sample Output XPROP Command . 109
60. Xcalc (OS/2 X Window Client Application) 109
61. Xant (OS/2 X Window Client Application) 110
62. OSF/Motif Application XMPIANO . 111
63. Menu Specifications for the Root Menu 117
64. Definitions for the Window Menu with Accelerator 117
65. Definition for the Window Menu without Accelerator 118
66. Key Bindings . 118
67. Button Bindings . 119
68. A Sample Color Table . 121
69. Using the PMX Configuration Options . 126
70. Keyboard Options . 127
71. Issuing the XMODMAP -pk Command . 129
72. An Input File for XMODMAP . 129
73. Issuing the XMODMAP -pk Command with Keycode 51 Set to EXECUTE 130
74. Window Controls . 131
75. An Example Entry in C:\TCPIP\ETC\X0HOSTS 132
76. An Example Entry in C:\TCPIP\ETC\HOSTS 132
77. X Host Authorization . 132
78. Cursor Options . 133
79. Color Options . 134
80. Example of the Contents of C:\TCPIP\X11\RGB.TXT 136
81. Example of X Display under VM to Set Colors for XCLOCK 136
82. Changing RGB.TXT . 137
83. Example of userid.X.DEFAULTS under MVS to Set Colors for XLOGO . 137
84. Adding New Colors to RGB.TXT . 138
85. Fonts Option . 139
86. Example of the Contents of D:\TCPIP\X11\MISC\FONTS.DIR 140
87. Example of the Contents of D:\TCPIP\X11\MISC\FONTS.ALI 141
88. Examining courr24.PCF Using PMX Utility XDF 142
89. The Entry in FILES.DIR Created by MKFONTDR for ITL14.SNF 143
90. Config Data Set of AIX Font Server . 144
91. Xset Command . 145
92. XFD Output . 145
93. Xlsfonts Utility . 146
94. Cut and Paste . 146
95. Cut in XEDIT Application . 147
96. PASTE in PM Enhanced Editor . 148
97. Other Options . 148
98. The RGB Database . 149
99. Reload the RGB Database . 150
100. HCL-eXceed/W Font Database . 151
101. HCL-eXceed/W Font List . 151
102. Changing the Keyboard Mapping for HCL-eXceed/W 152
103. The Entry in C:\TCPIP\ETC\HOSTS for the HP 9000 157
104. An hpterm Window Displayed at an OS/2 X Server 158
105. Sample HP 9000 Application Resource File Definitions for xload 159

x X Window System Guide

106. An HP 9000 xload Window Displayed at an OS/2 X Server 159
107. Entries in /etc/X0.hosts on the HP 9000 160
108. Entries in /etc/hosts on the HP 9000 . 160
109. Entry for the HP 9000 Target Display in userid.XWINDOWS.DISPLAY . 160
110. Input File for HP 9000 xmodmap Utility 161
111. Contents of the ZAP Input File GXDEMO1 ZAP 178

Figures xi

xii X Window System Guide

Tables

 1. XLFD Font Item Descriptions . 8
 2. X Window System Visual Classes . 10
 3. Contents of AIXwindows Environment/6000 41
 4. Memory Requirements . 43
 5. Disk Space Requirements . 43
 6. Disk Space Requirements for Swapper . 43
 7. HCL-eXceed Server Commands . 52
 8. Application Resources for XLOGO . 70
 9. Application Resources for GDDM under MVS 72
10. Application Resources for BITMAP . 85
11. Application Resources for GDDM under VM 90
12. GDDM Window Width and Graphics Display Area Relationship 91
13. X Window Utilities . 105
14. X Window System Client Programs . 106
15. How to Connect to a Client System . 126
16. X Window Utilities . 127

 Copyright IBM Corp. 1992, 1994 xiii

xiv X Window System Guide

Special Notices

This publication is intended to help the customer to understand and install the X
Window Systems for MVS, VM, AIX, OS/2 and DOS. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by:

• IBM TCP/IP Version 2.2.1 for MVS
• IBM TCP/IP Version 2.2 for VM
• IBM AIXwindows Environment/6000 Version 1.2.5 for AIX/6000
• IBM TCP/IP Version 2.0 for OS/2
• IBM TCP/IP Version 2.1.1 for DOS

See the PUBLICATIONS section of the IBM Programming Announcement for
these products for more information about what publications are considered to
be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, CT 06904 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

AIX
AIXwindows
GDDM
graPHIGS
IBM
InfoExplorer

 Copyright IBM Corp. 1992, 1994 xv

OS/2
Presentation Manager
PS/2
RISC System/6000
System/370
VM/ESA
VM/XA
XGA
Xstation Manager

The following terms, which are denoted by a double asterisk (* *) in this
publication, are trademarks of other companies:

AT&T is a trademark of AT&T, Inc.
DEC is a registered trade mark of Digital Equipment Corporation.
DECnet is a trade mark of Digital Equipment Corporation.
GL is a trademark of Iris Graphics Library.
HCL-eXceed is a trademark of Hummingbird Communications Ltd.
HP and Hewlett Packard are trademarks of Hewlett Packard Corporation.
HP-UX is a trademark of Hewlett Packard Corporation.
Microsoft is a trademark of Microsoft Corporation.
Motif is a trademark of the Open Software Foundation, Inc.
Open Look is a trademark of AT&T.
Open Software Foundation is a trademark of the Open Software Foundation, Inc..
OSF is a trademark of the Open Software Foundation, Inc.
OSF/Motif is a trademark of the Open Software Foundation, Inc.
PostScript is a trademark of Adobe Systems Incorporated.
Sun is a registered trademark of Sun Microsystems, Incorporated.
UNIX is a registered trademark of Novell, Inc.
WINDOWS 3 is a registered trademark of Microsoft Corporation Inc.
X Window System is a trademark of the Massachusetts Institute of Technology.
X.desktop is a trademark of IXI Limited.

xvi X Window System Guide

Preface

The purpose of this document is to provide information pertinent to the
implementation of the X Window System for TCP/IP under MVS, VM, AIX/6000,
OS/2 and DOS.

Specifically the document addresses the customization and interoperability of the
X Window Systems provided by the following products:

• IBM TCP/IP Version 2.2.1 for MVS running under MVS/ESA
• IBM TCP/IP Version 2.2 for VM running under VM/ESA and VM/SP
• IBM AIXwindows Environment/6000 Version 1.2.5 running under AIX/6000

Version 3.2.5
• IBM TCP/IP Version 2.0 for OS/2 running under OS/2 Version 2.1
• HCL-eXceed/DOS Version 3.3 with TCP/IP Version 2.1.1 for DOS running

under DOS Version 6.1
• HCL-eXceed/W Version 3.3.3 with TCP/IP Version 2.1.1 for DOS running under

DOS Version 6.1 with Microsoft Windows**Version 3.1

Although this document is not intended as an X Window System application
programming guide, the X client application environments are discussed for
MVS, VM, AIX/6000 and OS/2. Information is provided that will allow a user to
understand what is required to get an X application working on each of these
systems.

X Window System interoperability with a non-IBM platform is also discussed and
demonstrated.

This document is intended for persons who will:

 1. Evaluate the client/server functions of the X Window Systems for the
appropriate IBM system platforms described above.

 2. Customize and implement the X Window Systems on the system platforms
described above.

 3. Plan for and develop suitable X Window System client application
environments on the system platforms described above.

It is assumed that the reader has a working knowledge of TCP/IP and each of the
operating systems listed above.

The document is organized as follows:

• Chapter 1, “Introduction”

The introduction provides an overview of the X Window System and
describes each of the X Window Systems as implemented on the MVS, VM,
AIX/6000, OS/2, and DOS platforms.

• Chapter 2, “Installation”

This provides a description of the steps to install and verify the basic X
Window System on each of the MVS, VM, AIX/6000, OS/2 and DOS platforms.

• Chapter 3, “X Client Application Considerations”

This chapter describes the X client application environment under MVS, VM,
AIX/6000 and OS/2. It includes considerations for creating, compiling,
link-editing and running X client applications.

 Copyright IBM Corp. 1992, 1994 xvii

• Chapter 4, “Customizing the X Server”

This chapter describes the steps to customize the X Window Systems on
each of the server platforms, AIX/6000, OS/2 and DOS. It includes guidelines
for customizing the workstation environment including colors, fonts and
keyboard mappings.

• Chapter 5, “Multivendor Interoperability”

This chapter describes the steps taken to achieve interoperability between
the IBM X Window System implementations and a Hewlett-Packard X Window
System.

xviii X Window System Guide

Related Publications

The following publications are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

Prerequisite Publications
• TCP/IP for MVS: Planning and Customization, SC31-6085

• TCP/IP for MVS: User′s Guide, SC31-6088

• TCP/IP for MVS: Programmer′s Reference, SC31-6087

• TCP/IP for VM: Planning and Customization, SC31-6082

• TCP/IP for VM: User′s Guide, SC31-6081

• TCP/IP for VM: Programmer′s Reference, SC31-6084

• TCP/IP for OS/2: Installation and Administration, SC31-6075

• TCP/IP for OS/2: User′s Guide, SC31-6076

• TCP/IP for OS/2: Command Reference, SX75-0070

• TCP/IP for OS/2: Programmer′s Reference, SC31-6077

• TCP/IP for OS/2: X Window System Client Guide, SC31-7087

• TCP/IP for OS/2: X Window System Server Guide, SC31-7070

• TCP/IP for DOS: Installation and Administration Guide, SC31-7047

• TCP/IP for DOS: User′s Guide, SC31-7045

• TCP/IP for DOS: Command Reference, SX75-0083

• AIX for RISC System/6000 Installation Guide, SC23-2341

• HCL-eXceed/W for Microsoft Windows User′s Guide, by Hummingbird
Communications Ltd., Manual Release 3.3.3

• HCL-eXceed/DOS User′s Guide, by Hummingbird Communications Ltd.,
Manual Release 3.3

Additional Publications
• AIX Hypertext Information Base Library, SC23-2163

• X Window System User′s Guide, by Valerie Quercia and Tim O′Reilly,
Published by O′Reilly & Associates, Inc., ISBN 1-56592-015-5

• A Beginner′s Guide to the X Window System, by Hewlett-Packard Company,
HP Part Number 98594-90001

• Configuring the X Window System on Series 300, by Hewlett-Packard
Company, HP Part Number 98594-90025

• The Joy of X, by Niall Mansfield, Published by Addison-Wesley Co., ISBN
0-201-56512-9

 Copyright IBM Corp. 1992, 1994 xix

International Technical Support Center Publications
• IBM TCP/IP for MVS Installation and Interoperability, GG24-3687

• IBM TCP/IP for VM Installation and Interoperability, GG24-3624

• IBM TCP/IP for OS/2 Installation and Interoperability, GG24-3531

• AIXwindows Environment Version 1.2 2D Base Features, GG24-3813

• AIXwindows Programming Guide, GG24-3382

A complete list of International Technical Support Center publications, with a
brief description of each, may be found in Bibliography of International Technical
Support Centers Technical Bulletins, GG24-3070.

To get listings of ITSO technical bulletins (redbooks) online, VNET users may
type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

How to Order ITSO Technical Bulletins (Redbooks)

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-284-4721. Visa and Master Cards are accepted. Outside the
USA, customers should contact their local IBM office.

Customers may order hardcopy redbooks individually or in customized sets,
called GBOFs, which relate to specific functions of interest. IBM employees
and customers may also order redbooks in online format on CD-ROM
collections, which contain the redbooks for multiple products.

xx X Window System Guide

Acknowledgements

The advisor for the Second Edition of this document was:

Eamon Murphy
International Technical Support Organization, Raleigh Center

The author of the Second Edition was:

Andrea Paravan
IBM Germany

The advisor for the First Edition was:

Philippe Beaupied
International Technical Support Organization, Raleigh Center

The authors of the First Edition were:

Paul Brisk
IBM Australia

Stephan Mueller
IBM Switzerland

This publication is the result of a residency conducted at the International
Technical Support Organization, Raleigh Center.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

John Doyle
Rodney Maxwell
William T. Nelson
Allen Springer
Barbara Walters
TCP/IP Development, Research Triangle Park, Raleigh

Rob MacGregor
Carla Sadtler
International Technical Support Organization, Raleigh Center

Mark Kressin
International Technical Support Organization, Austin Center

Scott Vetter
Michael Schwartz
International Technical Support Organization, Poughkeepsie Center

Elbert Hu

TCP/IP Development, Thomas Watson Research Center, Yorktown Heights

 Copyright IBM Corp. 1992, 1994 xxi

xxii X Window System Guide

Chapter 1. Introduction

The X Window System** is a portable network-based graphical windowing
system that was developed at the Massachusetts Institute of Technology (MIT) in
1984. Often known simply as X, it has developed through several releases since
its inception, the latest being X Version 11 Release 6. It is now accepted as the
default industry standard for a windowing system and is implemented by a
number of platform vendors including IBM*, DEC**, Hewlett-Packard**, Sun**, and
AT&T**.

The reasons for the wide acceptance of X by the industry and the important role
it is playing in the development of applications include:

• X is a network-transparent Graphical User Interface (GUI). Network
transparency means that X applications can run on one host and direct their
output to a display either connected to the same host, or to another host. To
the user, an X workstation looks like it is connected to many different hosts
at the same time.

• X applications are independent of vendor and device. Since the application
only needs to communicate with the X interface, it does not need to know the
details of any particular workstation display ′s hardware or operating system.
As long as an X application is able to establish a connection to the
workstation, it can use all the capabilities of the base windowing system on
that workstation. The workstation ′s hardware and system software is hidden
by the X protocol, which means an application running on one vendor′s
platform can use another vendor′s workstation that supports X.

• As a GUI, X provides some advantages to the end user:

− It is easy to learn
− It is easy to use
− It operates intuitively

1.1 A Brief History
The birth of the X Window System grew out of two separate projects that were
being conducted at MIT in the late 1970s.

• The first was the Argus Project underway at the MIT Laboratory for Computer
Science. Its aim was to develop a programming language that could be
used in a distributed network environment. It was soon realized that one of
the tools that was needed for Argus was a terminal that could display
multiple windows. In the Argus environment there could be many different
processes, each running on a different node in the network. The debugging
process would be greatly simplified if each process could be displayed on a
separate window on the one display.

• The second project was Project Athena, which was jointly sponsored by IBM
and DEC. The aim of Project Athena was to build a computing environment
composed of heterogeneous platforms, each with a consistent user interface.

It was not long before members from both project teams were discussing the
applicability of available windowing software. After some initial investigation, it
was discovered that some work had been done at Stanford University to develop
the prototype of a window system that was simply called W.

 Copyright IBM Corp. 1992, 1994 1

Two of the team members, Bob Scheifler of the Argus project and Jim Gettys of
Project Athena, took the W system and developed it into the X Window System.
Which of course is how X derived its name. X comes after W!

The MIT X Consortium was formed in January 1988 and operated within the MIT
Laboratory for Computer Science. In September 1993 the X Consortium moved
out of MIT and became an independent, not-for-profit membership corporation.
The continuing purpose of the X Consortium is to foster the development,
evolution and maintenance of a comprehensive set of vendor-neutral, system
architecture-neutral, network-transparent windowing and user interface
standards.

Today the X Window System is owned by the X Consortium Inc., which has as its
members those industry groups that have an interest in influencing the
development of X. It is chiefly hardware and software vendors that make up the
X Consortium.

1.2 X Concepts
The following are some concepts relevant to the X Window System.

1.2.1 Client/Server
The implementation of X consists of two components and this provides the
independence of the applications from the devices and the hardware. They are:

• The X client

• The X server

The X server is a program that runs on a workstation that controls a display, a
keyboard and a mouse. The application is called the X client. This model is
probably not what you would first expect when you consider other well-known
client/server relationships such as Telnet or FTP. However, it does make sense
when you understand the relationship between the X application and the
workstation. Remember that every time the application wants to use the screen
for output, or the keyboard for input, it has to ask the X server.

The X client can make requests of any X server on the network for display,
mouse, or keyboard services. The host on which the application runs need only
operate with an X Window System that supports the X client service. Similarly,
the workstation need only provide the X server support. It is not necessary for
every platform participating in an X Window network to provide both server and
client support.

Figure 1 on page 3 illustrates the components of an X Window System.

2 X Window System Guide

Figure 1. The Components of an X Window System

1.2.2 Client
The client is the actual application and is designed to employ a graphical user
interface to display its output. It is usually written by the end user but may be
included as part of the X Window System software.

In order to support an X client application a platform needs to provide the
appropriate function libraries that allow the application to communicate across
the network to the X server. When the application is written using the C
programming language, the function library is called Xlib. It provides nearly 300
functions that can be called by the application to perform tasks that can include:

• Create, move, scale, stack and delete windows
• Draw lines rectangles, arcs and polygons
• Employ fonts, color maps, graphic images and cursors
• Perform a wide variety of other functions

A graphic display is not required on the client host because the X client can
request this of the X server. In addition, the client application does not need to
be concerned with the devices provided by the server. For example, since the X
server handles the screen, the client does not need to know about the
specifications of the output screen. The same application can send output to
either a high resolution color screen or to a small black and white screen.

Chapter 1. Introduction 3

1.2.2.1 X Toolkit
In theory Xlib is the only library that is required to run an X application. It
provides the base or primitive blocks required to create the X client application.
However, it is quite a complex task and may require many lines of code to
produce even the simplest of application windows using Xlib alone.

In order to make X client application programming much easier, a set of
high-level, pre-programmed functions known as an X toolkit, or Xt is provided on
most X client platforms. One Xt function usually translates into several Xlib calls
and there are hundreds of standard Xt functions that are available. Xt functions
are also called intrinsics.

1.2.2.2 Widgets
In creating an X client application, the programmer must create and plan to
manage user interface objects that the user at the workstation will manipulate to
drive the application. These objects are referred to as widgets.

It is appropriate to consider widgets as a set of procedures or functions that are
at a level higher than those provided with the X toolkit. Widgets are comprised of
Xt functions. Examples of widgets include:

• Push buttons
• Scroll bars
• Text boxes
• Pull-down menus
• Dialog boxes

Usually an X toolkit will include a few of the more common widgets that might be
used in an X client application. However, it is more likely that the application
developer will purchase a widget set separately from a vendor. Widget sets are
developed by vendors as collections of pre-programmed graphics objects that
are common to many X client applications. Examples of available widget sets
are:

• The Athena Widget Set from MIT
• The OSF/Motif** Widget Set from the Open Software Foundation (OSF)
• The Open Look** Widget Set from AT&T

Although the widgets in these sets perform essentially the same functions, the
difference between the sets is the look and feel.

1.2.3 Server
The X server is the composite partner of the X client in an X Window network.
The server is the program on the workstation that controls the screen, and
handles the keyboard and the mouse (or other input devices) for one or more X
clients. The X server is responsible for output to the display, the mapping of
colors, the loading of fonts and the keyboard mapping.

The X server workstation must provide a bit-mapped graphic display terminal
which allows each individual picture element (or pixel) on the screen to be
accessed and used to display a specific color or shade of grey. The pixels are
the elements that are used to construct a graphic image such as a window on
the screen.

Sometimes, the results of the application output are displayed on the system
where the client is running. In this case the client and the server reside on the

4 X Window System Guide

one platform. Often, however, you may wish to run the X client application on a
remote machine that is better suited to the task, and just display the output at
your local workstation. The application on the remote machine would be the
client and your local workstation would be the server.

The client identifies the server by using an X client display variable. It has the
syntax:

HOST:SERVER.SCREEN

where:

HOST specifies the host, or network node on which runs the X server
system. For UNIX ** systems, when HOST=unix, the output is directed
to the local console.

SERVER specifies the server or display number (starting with 0) which
represents the resources controlled by the one server program. The
term server and display can be used interchangeably when
discussing X Windows. A display may be composed of multiple
screens, but the screens share only one keyboard and pointer. Since
most workstations have only one keyboard and one pointer, they are
classified as having only one display. If a host has several displays,
each is assigned a number (beginning with 0) when the X server for
that display is started.

SCREEN specifies the screen number, where a screen is a physical terminal.
If there is only one physical screen this is omitted. It is assumed to
be 0.

Typically X server programs run on personal computers, high performance UNIX
workstations or what are called X Terminals.

1.2.3.1 X Terminals
The popularity of the X Window System and its widespread usage has opened a
market for a new kind of terminal - the X Terminal. X Terminals are typically
low-cost, easy-to-use workstations which operate in a graphical, X Window
environment. In particular, the X Terminal executes the X server part of the X
Window system. The X client will not normally execute on an X Terminal but will
run on the CPU of the host system. An X Terminal usually has the server code
downloaded from the host or stored in read-only memory (ROM).

IBM has introduced a family of X Terminals called Xstations. The first of these
was the IBM Xstation 120, which was introduced in February 1990. Since that
time Xstation models 130, 140 and 150 have also been introduced.

The X server code for the IBM Xstations is distributed with IBM AIX Xstation
Manager*/6000 Version 1.4. This is the latest code at the time of writing and
provides X11R5 support.

For more information about Xstations refer to the appropriate product
publications including The IBM Xstation Handbook, GG24-3695.

Chapter 1. Introduction 5

1.2.3.2 Window Manager
The window manager as an X client is an important part of the X Window
System. It is the basis for providing a graphical interface to the user that is
controlled by a point and click device such as a mouse.

A window manager allows users to manipulate the application windows at the X
server display. Functions supported include:

• Move windows
• Scale windows
• Move the input focus from one window to the next
• Alter the stacking of the windows
• Iconization of windows

Examples of the window managers available for use with an X Window System
are:

uwm The universal window manager

awm The Athena window manager

twm Tom ′s window manager

olwm The Open Look window manager

mwm The Motif window manager

It should be noted that under OS/2* on the IBM PS/2* the window manager used
with the X Window System is OS/2 Presentation Manager*.

1.2.3.3 Display, Screen, Window, Mouse, Keyboard
Display Is associated with an X server program and can have one or more

physical screens. A display can only have a single keyboard and a
single pointing device.

Screen Physical terminal connected to a system.

Window A region provided by a display. It represents the connection between
a client and a server and is the output area provided by the X server
for the application.

Mouse An example of a pointer device used for input and managed by the X
server. Most X servers assume a three-button mouse, but you can
use a two-button mouse as well. The use of the middle button is
emulated by pressing both the left and the right mouse.

Keyboard Input device managed by the X server.

1.2.4 X Networking
The X server and the X client communicate using the network transparent X
protocol. It is through using this protocol that the X application can be
independent of the physical components and structure of the network. The
application identifies and communicates with the X server using the X client
display variable described previously.

Currently X Window System is supported across two network transport
mechanisms:

• TCP/IP

• DECnet**

6 X Window System Guide

TCP/IP is certainly more common and is better suited to the concept of the X
Window System because it is a widely accepted industry standard for
interconnecting heterogeneous system platforms.

An X application makes calls to Xlib and it is the functions within Xlib that
communicate to the X server using the X protocol. The Xlib functions use the
socket interface to access the network.

Information such as keyboard input passes from the server to the client in the
form of events. An event is a packet of information that tells the client
something it needs to act on and occurs as a result of the pointer moving or a
key being depressed. When a client program receives a meaningful event, it
responds with a request to the server. For instance, the client may request that
a window be scaled. The server would respond to the request by updating the
appropriate window on the display.

1.2.5 Fonts
A font describes the size and shape of text characters. Normally an X server will
provide several font options and each font will be referenced by a font file which
is a list of indexed character patterns. When the server is requested to draw a
character string, it treats each character in the string as an index to the font.
For example, the ASCII 0 digit corresponds to the decimal value 48. When the
workstation draws the digit 0 it draws whatever character it finds at index
position 48 in the font file. Most fonts have a replacement character that the
workstation draws by default when the string specifies a character that is not
present in the font.

In most instances fonts are used for drawing strings of ordinary text. Almost all
such fonts contain the 96 displayable characters of the ASCII set, with a space
character for the replacement character. While using a font your application
may need information about the sizes of individual letters and the amount of
space to leave between successive lines of the text drawn. This information is
stored in a font structure. One or more of these files can be found in the font
directories on the X server workstation.

With X Version 11 Release 4 there is a new naming convention for fonts. The X
Logical Font Description (XLFD) specifies a complete X systematic name for each
font. An example of an XLFD defined font name is illustrated in Figure 2 on
page 8.

Chapter 1. Introduction 7

Figure 2. An Example of the XLFD Font Description Convention

The meaning for each font item is shown in Table 1.

Table 1 (Page 1 of 2). XLFD Font Item Descriptions

Font Description

Foundry Specifies the type foundry or typeface design company (IBM,
adobe, etc.).

Font family The name of the type family.

Weight Describes the blackness of the printed font.

Slant Describes the style of the font (r for roman, i for italic, o for
oblique).

Set width Describes how tightly packed the characters are (normal,
narrow, expanded).

Style Identifies additional typographic style information (serif, sans
serif, informal normally).

Pixel size The font′s nominal height from the top of a capital letter to the
bottom of a descender in pixels.

Point size The font′s nominal height. The units are tenths of printerpoints
(there are approximately 28 printerpoints per centimeter or 72
per inch).

Horizontal
resolution

Measured in pixels per inch or dots per inch.

Vertical resolution Measured in pixels per inch or dots per inch.

8 X Window System Guide

When working with an X application, the user can employ the resources provided
by the X server. The fonts file is loaded from a file on the workstation providing
the display, and not from the host where the application runs. In this way the
user is able to choose the font for the application output based on what is
available at the X server. Prior to X11R5, all of the standard fonts provided with
X were bitmap fonts. Release 5 sees the addition of font scaling and includes
some new outline fonts, which are suitable for scaling. An outline font stored in a
single file can be scaled to any point size you request (though the scaling
requires some system overhead).

The standard Release 5 bitmap fonts should be available on your system in
portable compiled font format. The font files have an extension of .pcf to indicate
this format.

In addition, prior to Release 5, fonts needed to be available on the local machine
or had to be provided over the network via certain protocols. In Release 5, the X
Window System provides a font server (fs) from which you can request fonts
resident on other machines in the network.

Table 1 (Page 2 of 2). XLFD Font Item Descriptions

Font Description

Spacing Describes whether a font is proportionally spaced or not (m for
monospace, p for proportional, c for terminal fonts).

Average width The unweighted arithmetic mean width in units of tenths of
pixels.

Characterset The X registered name for the organization that controls the
character set.

Code set Specifies which character set is used by the font. Most X11R4
fonts use Latin-1 (1 for Latin 1, 850 for code page 850).

1.2.6 Colors
Since an X Window System is device independent, it is possible for the same
application to use either a monochrome or a color display for output. This is
achieved through the use of colormaps at the X server.

The number of colors that a workstation can support depends upon the number
of bits in the pixel value. This is often referred to as the depth of a screen. For
example, a black and white screen has a single bit pixel that is either 1 or 0. A
color display may have 4, 8, 10, 12 or 24-bit pixels, although 4-bit or 8-bit pixel
screens are more common. For a color display that supports an 8-bit pixel,
there are 256 possible colors that could be selected at one time.

The X client application specifies a pixel value that is sent to the X server. The
X server uses a colormap to convert the pixel value into a color on the screen.
The colormap, also called a color lookup table, contains an array of colorcells,
each with a different combination of red, green, and blue (RGB) primary color
values. Each one of these combinations represents a different color or shade.
The pixel value is used by the X server as an index to a colorcell within a
colormap. With an 8-bit pixel, the color table can have 256 cells that can be
accessed.

The X Window System defines six visual classes, which describe the color
capability of the workstation. Before an X client application can send a pixel

Chapter 1. Introduction 9

value to a workstation, it must understand the visual class supported by the
workstation. There are Xlib functions that are called, which allow an application
to determine parameters such as the colormap, the pixel value (or depth) and
the visual class that are supported by the workstation.

Most workstations support just one visual class, but some allow the use of
several visual classes at the same time. For example, a screen displaying
multiple windows may have a different visual class for each window. The visual
class tells the X client application how the workstation will use the pixel value as
an index to the colormap. The visual classes are described in Table 2.

By using a workstation that supports the PseudoColor visual class it is possible
to support up to 16,777,216 colors, of which 256 can be displayed at one time
using only an 8-bit pixel. This is because colorcells can be used dynamically
and a workstation can load new RGB primary values into colorcells quite rapidly
thus providing 256 distinct levels for red, green, and blue primary colors yielding
16,777,216 combinations.

Some workstations have no color translation hardware at all. X supports these
workstations with the StaticColor, TrueColor and StaticGray visual classes. As
far as an X application is concerned, these workstations do have colormaps, but
the colormaps are pre-loaded with red-green-blue values and cannot be
changed.

Table 2. X Window System Visual Classes

Visual Class Description

PseudoColor In this visual class, each pixel value indexes a red-green-blue
colormap. The contents of the colormap may be changed
dynamically. Each pixel is treated as a single index into a
single colormap array. Each entry in the colormap contains a
red-green-blue triplet.

DirectColor In DirectColor, the pixel is decomposed into separate bit fields
for red, green, and blue. The primary fields index the
colormap separately for each primary. The colormap is
treated as three separate arrays containing red, green, and
blue values. The red field from the pixel indexes the red
colormap, the green field indexes the green colormap, and the
blue field indexes the blue colormap. Direct color requires
more bits per pixel than PseudoColor, but allows more colors
and shades to be displayed simultaneously.

GrayScale GrayScale is like PseudoColor, except the video screen
displays black-and-white (or green, or amber).

StaticColor StaticColor is similar to PseudoColor, except that the contents
of the colormap are predefined by the workstation software
and cannot be changed.

TrueColor TrueColor is similar to DirectColor, except that the contents of
a TrueColor map are predefined to be a linear or near-linear
ramp, and cannot be changed. This visual class is commonly
used in color workstations which lack color translation
hardware.

StaticGray StaticGray is similar to GrayScale, except that the contents of
StaticGray colormaps cannot be changed. Most black and
white displays have a visual class of StaticGray and a depth of
queue.

10 X Window System Guide

The support provided for the visual classes listed above varies according to
which display adapter is being used. For example, a graphics display adapter
will provide more comprehensive support than a standard display adapter. For
more information you should refer to the adapter ′s documentation.

1.2.7 Keyboard
The keyboard is managed by the X server. When a key is pressed on the
keyboard, the keycode that is associated with the key is translated into a
character or a string on the server. This information is then passed to the X
client as an event. The advantage of this design is that the client application can
be device independent.

In order to understand how the application can be independent of the keyboard it
is important to understand the following terms:

Keycode This is a number between 8 and 255 (in decimal notation). Each
keycode represents a physical key on a keyboard. The keycode is
fixed for each key and cannot be changed.

Keysym A keysym is a name that represents the label of the key. Keysyms
are mapped to keycodes at the server.

Modifier A modifier is a logical keyname. A logical keyname represents
functions recognized by X programs. A modifier modifies the actions
of other keys which means that, when it is pressed in conjunction with
another key, the two keys together represent a particular function.
The simplest example is the shift modifier. The modifier is also
associated to a keysym.

The server has a file which contains all the keyboard-specific information. This
file is read when the X server is started and is the input for the mapping of the
keyboard. The keyboard map specifies the keysyms that are mapped to each
keycode.

As an example, assume we have a very simple keyboard with two keys, one with
the label T, the other with the label Shift. The T key has the keycode 40 and the
Shift key has the keycode 50. In the server keyboard map, keycode 40 is
associated with the keysym t while keycode 50 is associated with the keysym
shift. In addition the keysym shift is associated with the modifier shift. When we
press the T key X interprets this as the t character, and when we press Shift with
T, X interprets this as the T character.

1.3 IBM X Window System Implementations
Below are the IBM X Window System implementations that we will be working
with in this publication.

1.3.1 MVS
The IBM product TCP/IP Version 2.2.1 for MVS (Program Number 5735-HAL)
provides an X Window System client service. This support is automatically
shipped with the product. This means that MVS can support an application,
known as the X client, that can communicate with a display provided by an X
server. The X client application runs in a TSO user address space and
communicates with the X server using the X protocol across a TCP/IP network.

Chapter 1. Introduction 11

The X server provides access to resources such as a screen, a keyboard, a
mouse, fonts, and graphics. It accepts requests from the X client application and
sends user input back to the X client. Each X client can make requests of
multiple X servers and each X server can service multiple X clients. Examples
of X server platforms that would interoperate with an MVS X client application
might be OS/2, AIX* or DOS.

TCP/IP Version 2.2.1 for MVS provides two methods for supporting X client
applications under MVS:

 1. X Window System GDDM* support

 2. X Window System API for user-written applications

1.3.1.1 MVS X Window System GDDM Support
The X Window System GDDM interface supports graphics display output from the
IBM Graphical Data Display Manager (GDDM) to be displayed at an X server
station.

When the X Window System GDDM interface is activated it translates the data
stream created by GDDM into the X protocol and transmits it to the X server for
display.

1.3.1.2 MVS X Window System API
It is possible to write an X client application and run it under MVS. The MVS X
Window System provides an application program interface (API) allowing an
application to make calls to the API to create the X protocol to have output
displayed on an X server. When writing this application, the user need only be
concerned with the X client API and the syntax of the API calls.

Application programs using the X Window System must be written in C and
require the following corequisite products:

• IBM C for System/370*, Compiler Licensed Program (Program Number
5688-187)

• IBM C for System/370, Library Licensed Program (Program Number 5688-188)

This environment under MVS is illustrated in Figure 3 on page 13.

12 X Window System Guide

Figure 3. MVS X Window System API

The X Window System under MVS is equivalent to the MIT-defined X Window
System Version 11 Release 4. It provides:

• SEZAX11L which contains the Version 11 X Window System subroutines:

− X Window System subroutines.

− Extension routines which permit the creation of extensions to the core
Xlib functions with the same performance characteristics.

− MIT extensions to the X Window System. The extensions provided by the
AIX X Window System are not supported by the MVS X Window System
API. The following MIT extensions are supported:

- SHAPE

- MITMISC

- MULTIBUF

− Associate Table functions which support the association of user data
structures with X Window resources.

− MIT X Miscellaneous Utility Routines that are a common set of functions
that have in the past proved useful to application writers.

• SEZAOLDX, which provides Version 10 X Window System-compatible
routines.

• XTLIB (the X Toolkit intrinsics library).

Chapter 1. Introduction 13

• XAWLIB (the Athena Widget set library).

• XMLIB (the OSF/Motif Release 1.1-based widget set library).

• Header files required for compiling X client applications.

• Header files required for compiling X client applications using the
OSF/Motif-based widget set.

• Standard MIT X client applications.

• Sample X client applications (XSAMP1, XSAMP2, XSAMP3).

The application calls XOpenDisplay() to start communication with an X server on
a workstation. This invokes the Xlib code to open a communication path called a
socket to the X server and send the appropriate X protocol to initiate the
client/server communication.

The X protocol used between the Xlib code and an X server uses an ISO Latin-1
encoding for character strings, while an application running under MVS will use
EBCDIC. The Xlib code will automatically translate character strings to and from
EBCDIC and ISO Latin-1 as required using internal translate tables.

Under MVS, external names must be eight characters or less. Under the X
Window System, the X client API supports names of routines and data sets that
often exceed this limit. In order to support the X client API under MVS, all X
client application names longer than eight characters are remapped to unique
names using the C compiler preprocessor. This name remapping is found in a
file called X11GLUE.H, which is automatically included in a user-written X client
application when the standard X header file called XLIB.H is included.

1.3.1.3 MVS X Window System Toolkit
IBM provides an X toolkit with the X Window System for MVS. The purpose of
the toolkit is to simplify the design and reduce the time to code X client
applications by providing a set of common user interface functions often called
intrinsics. These functions are composed of many of the functions that are to be
found in Xlib. By using the toolkit intrinsics, the application programmer will not
need to go down to the low level of coding the Xlib routines to define the
mechanisms for handling the interaction between the X server and the X client.

For a full list of the intrinsics supplied with the X toolkit for MVS please refer to
the TCP/IP Version 2.2.1 for MVS: Programmer′s Reference.

1.3.1.4 MVS X Window System Widget Sets
IBM provides two widget sets with the X Window System for MVS. These are:

• The MIT-developed widget set commonly referred to as the Athena widget
set.

• The OSF/Motif widget set.

The widgets in each of these sets are composed of the intrinsics in the X toolkit
provided with the MVS X Window System. These widgets provide the
programmer with many pre-programmed objects that are commonly used in X
client applications. They greatly reduce the amount of time and effort required
to create a client application under MVS.

For a full list of the widgets supplied with the X Window System for MVS please
refer to the TCP/IP Version 2 for MVS: Programmer′s Reference.

14 X Window System Guide

1.3.1.5 Creating an X Client Application under MVS
In order to write an application that uses the X Window System protocol under
MVS, it is necessary to understand the X client API. To help you gain a better
understanding of this API, IBM provides the source and executable code of three
sample X client application programs, XSAMP1, XSAMP2, and XSAMP3 with
TCP/IP for MVS. In addition, IBM also provides some standard X client
applications developed by MIT. These provide the best way to experiment with
and learn about the X client API under MVS. They are discussed in greater
detail in 3.1, “Under MVS” on page 59.

1.3.2 VM
The X Window System provided by the IBM product TCP/IP Version 2.2 for VM
(Program Number 5735-FAL) is essentially the same as that provided under MVS.
It provides an X Window System client service that is automatically shipped with
the product. In the same way as MVS, VM can support an application, known as
the X client, that can communicate with a display provided by an X server. The
X client application runs in a CMS virtual machine and communicates with the X
server using the X protocol across a TCP/IP network.

Examples of X server platforms that would interoperate with a VM X client
application might be OS/2, AIX or DOS.

As with MVS, TCP/IP Version 2.2 for VM provides two methods for supporting X
client applications:

 1. X Window System GDDM support

 2. X Window System API for user-written applications

1.3.2.1 VM X Window System GDDM Support
The X Window System GDDM interface supports graphics display output from the
IBM Graphical Data Display Manager (GDDM) to be displayed at an X server
station.

When activated, the X Window System GDDM interface translates the data
stream created by GDDM into the X protocol and transmits it to the X server for
display.

1.3.2.2 VM X Window System API
It is possible to write an X client application and run it in a VM/CMS
environment. The VM X Window System provides an application program
interface (API) allowing an application to make calls to the API to create the X
protocol to have output displayed on an X server. When writing this application,
the user need only be concerned with the X client API and the syntax of the API
calls.

Application programs written using the X Window System must be written in C
and require the following corequisites:

• IBM C for System/370, Compiler Licensed Program (Program Number
5688-187)

• IBM C for System/370, Library Licensed Program (Program Number 5688-188)

This environment under VM/CMS is illustrated in Figure 4 on page 16.

Chapter 1. Introduction 15

Figure 4. VM X Window System API

The X Window System under VM is is equivalent to the MIT-defined X Window
System Version 11 Release 4. It provides:

• X11LIB TXTLIB, which contains the Version 11 X Window System subroutines:

− X Window System Subroutines.
− Extension Routines, which permit the creation of extensions to the core

Xlib functions with the same performance characteristics.
− MIT Extensions to the X Window System. As with MVS, the AIX

extensions are not supported by the X Window System API under VM.
The following MIT extensions are supported:

- SHAPE

- MITMISC

- MULTIBUF

− Associate Table Functions, which support the association of user data
structures with X Window resources.

− Miscellaneous Utility Routines, which are a common set of functions that
have in the past proved useful to application writers.

• OLDXLIB TXTLIB, which provides Version 10 X Window System compatible
routines.

• XTLIB TXTLIB (X Toolkit intrinsics library).

• XAWLIB TXTLIB (Athena Widget set library).

16 X Window System Guide

• XMLIB TXTLIB (OSF/Motif-based widget set library).

• Header files required for compiling X client applications.

• Header files required for compiling X client applications using the
OSF/Motif-based widget set.

• Standard MIT X client applications.

• Sample X client applications.

The application calls XOpenDisplay() to start communication with an X server on
a workstation. This invokes the Xlib code to open a communication path called a
socket to the X server and send the appropriate X protocol to initiate the
client-server communication.

The X protocol used between the Xlib code and an X server uses an ISO Latin-1
encoding for character strings, while an application running under VM/CMS will
use EBCDIC. The Xlib code will automatically translate character strings to and
from EBCDIC and ISO Latin-1 as required using internal translate tables.

Under VM/CMS, external names must be eight characters or less. Under the X
Window System, the X client API supports names of routines and data sets that
often exceed this limit. In order to support the X client API under VM/CMS all X
client application names longer than eight characters are remapped to unique
names using the C compiler preprocessor. This name remapping is found in a
file called X11GLUE H, which is automatically included in a user-written X client
application when the standard X header file called XLIB H is included.

1.3.2.3 VM X Window System Toolkit
IBM provides an X toolkit with the X Window System for VM. It is very similar in
function and purpose to that provided with MVS. Please refer to 1.3.1.3, “MVS X
Window System Toolkit” on page 14 for a description.

For a full list of the intrinsics supplied with the X toolkit for VM please refer to
the TCP/IP Version 2 Release 2 for VM: Programmer ′s Reference.

1.3.2.4 VM X Window System Widget Sets
As with MVS, IBM provides two widget sets with the X Window System for VM.
They are:

• The MIT-developed widget set commonly referred to as the Athena widget
set.

• The OSF/Motif widget set.

The widgets in each of these sets are composed of the intrinsics in the X toolkit
provided with the VM X Window System. These widgets provide the programmer
with many pre-programmed objects that are commonly used in X client
applications. They greatly reduce the amount of time and effort required to
create a client application under VM.

For a full list of the widgets supplied with the X Window System for VM please
refer to the TCP/IP Version 2 Release 2 for VM: Programmer ′s Reference.

Chapter 1. Introduction 17

1.3.2.5 Creating an X Client Application under VM
In order to write an application that uses the X Window System protocol under
VM/CMS, it is necessary to understand the X client API. To help you gain a
better understanding of this API, IBM provides the source and object code of
three sample X client application programs, XSAMP1, XSAMP2, and XSAMP3
with TCP/IP for VM. In addition, IBM also provides some standard X client
applications developed by MIT. These provide the best way to experiment with
and learn about the X client API under VM. They are discussed in greater detail
in 3.2, “Under VM” on page 80.

1.3.3 AIX/6000
The IBM X Window System Implementation for the IBM RISC System/6000* is
called IBM AIXwindows Environment/6000* Version 1.2.5. This version was
announced in October 1993. The program number is 5601-257. AIXwindows
Environment/6000 provides both the client and the server part of the X Window
System. Included with AIXwindows Environment/6000 is the X server,
programming libraries, and a number of client applications that are supplied as
either executable modules or as source code.

1.3.3.1 What is AIXwindows
• IBM ′s implementation of X11 release 5 plus:

AIXwindows consists of several parts: the basic runtime code and utilities
are in X11rte.obj, files needed to develop and compile X clients are in
X11dev, and there are various font components. Some additional utilities and
toys are in X11ext (xdt, for example).

− Display PostScript

For each display adapter supported there is a specific driver. All the
native display adapters on the RS/6000 support Display PostScript
Xstations and PCs that are used as X terminals do not support Display
PostScript.

There are only a few applications that make use of Display PostScript, for
example, FrameMaker for imbedded PostScript graphics.

− Motif window manager and libraries from the OSF

The Motif window manager and the motif libraries provide a look and feel
that is similar to MS-Windows and Presentation Manager. The three
dimensional look of the Motif buttons was developed by HP. After the
introduction of the pseudo 3D look of Motif, MS-Windows and
Presentation Manager quickly changed to provide the same visual
feedback.

− X.desktop** from IXI

The X.desktop product from IXI is shipped as AIXdesktop with the
AIXwindows extensions (X11ext). It provides a simple desktop interface
to AIX. It is an add-on product and is not easily integrated. To really use
it one needs to heavily customize it.

Note that a replacement for AIXwindows called Common Desktop
Environment will be provided in AIX V4.1. This operating system version
was not available at the time of this residency.

− Additional utilities

18 X Window System Guide

AIXwindows comes with some additional utilities that let you edit fonts
(fontutil), change application resources interactively (custom), a menu
utility for the included demos (demodr), an automatic screen locker (xss)
and much more.

− Additional fonts

In addition to the standard MIT fonts in the subdirectories of
/usr/lib/X11/fonts there are a lot of fonts in /usr/lib/X11/fonts itself that
are provided as IBM add-ons, including fonts that conform to the
ergonomic standard ISO 9241.

All IBM fonts are supplied in ISO code pages and the PC850 code page.
The machine uses PC850 fonts by default. This is fine when one wants to
integrate with PCs, but for a UNIX environment one should use the ISO
code pages as these are commonly used in the UNIX world.

− AIXwindows provides only 2D support

In addition to AIXwindows there is an AIXwindows 3D package that
provides libraries with advanced graphics features (PEX, graPhigs, GL,
SoftgraPhigs, and openGL). The 3D package is not included in
AIXwindows and must be purchased separately.

1.3.3.2 The Components of X

Figure 5. The Components of X

The X server receives input events from the keyboard, mouse, tablet or other
devices. It processes those events and transfers them to the application via the
X protocol. The application gets the events through the X library (Xlib).

Chapter 1. Introduction 19

An application accesses the X server by using either Xlib directly or by using
one of the higher level libraries such as Xt (X toolkit), Xm (Motif), Xaw (Athena
widget set) or others.

No matter what high-level libraries are used, all requests to the X server are
then sent to the server via low-level primitives of the X library. The server then
reacts to the requests and updates the screen.

The server maintains several types of resources internally. For the average end
user, the fonts, application resources and keyboard map are the interesting
ones. They can be modified by special X applications:

setroot Modifies the properties of the root window, for example,
nice backgrounds and fancy cursor shapes

xrdb Modifies the X resource database (application resources)
in the server.

xset Modifies properties of the X server such as the font path,
screen saver time-out, and bell volume

font server Optionally provides the fonts for the X server

xmodmap Modifies the server′s keyboard map so that ILS keyboards
can be supported.

Display PostScript and other extensions to the X server use extensions of the X
protocol to communicate with the server. Use xdpyinfo to find out what
extensions are supported by a running X server. The xdpyinfo command will
also tell you about other server characteristics. Use xset q to find out even
more.

1.3.3.3 AIXwindows Environment/6000 3D Feature
The features listed previously are part of the AIXwindows Environment/6000 and
they satisfy the requirements of the user who needs a two dimensional GUI.
When there is a requirement for 3D capability you can order the AIXwindows
Environment/6000 3D feature.

The use of the 3D feature is not covered in this document. Three dimensional
GUI support is a non-standard enhancement.

AIX Windows/3D includes:

• Graphics Library (GL**) API with DBCS capability

• Personal graPHIGS*

• Graphical Kernel System Compatibility Option (GKS-CO)

• PEX, client support (full API) and server support

1.3.4 OS/2
TCP/IP Version 2.0 for OS/2 (Program Number 5622-086) provides an X Window
System server and an X Window System client. The support provided is
equivalent to Version 11 Release 5 (X11R5) of the X Window System server as
defined by MIT.

The X server and client code are not shipped automatically with TCP/IP for OS/2
but must be ordered as a separate features.

20 X Window System Guide

1.3.4.1 X Window System Server
The OS/2 X server enables X client application programs to display output in an
OS/2 Presentation Manager window. The X client applications can reside on one
or more system platforms that support the X client function. They communicate
with the OS/2 X server across a TCP/IP network. Examples of IBM platforms that
can support X client applications and can communicate with an OS/2 X server
include MVS, VM, OS/2 and AIX.

The OS/2 Presentation Manager is used by the OS/2 X server function as the X
Window manager. It is often referred to as the PMX server. This means that all
of the keyboard, display, and pointer devices that are currently supported by the
OS/2 Presentation Manager are available to the X server window manager.

The OS/2 X Window System server support is composed of the following
components:

• OS/2 X server code (PMX.EXE): This code uses and accesses the following
key files that are found by default in the TCPIP\X11 subdirectory (with the
exception of the X0HOSTS file as listed below):

− The X client host authorization file (X0HOSTS). This is used to identify
the X client hosts on the network that are authorized to connect to the
OS/2 X server. This file must be created by the X server administrator.

Note: This file must be stored in the TCPIP\ETC subdirectory.

− The color database (RGB.TXT). This file maps a large number of color
names onto some RGB (red-green-blue) values. It is possible to edit this
file to either modify the mappings or to create new available colors.

PMX uses information from the OS/2 Presentation Manager to map the
RGB values to indexes in the Presentation Manager color tables.

− X Font files.

• X Font Support: Includes fonts supplied by the IBM AIX X Windows product
as well as fonts from the MIT X Consortium X11R5 distribution. It is also
possible to import the source of fonts from other systems that are not
provided with the OS/2 X Window System and compile them for use by X
client applications.

• National Language Support for keyboards.

There are a series of programs that are included in X Window System server to
assist with administering and customizing PMX. An example is XMODMAP,
which supports the displaying and modification of the PMX keyboard modifier
map and keysym table.

1.3.4.2 X Window System Client and OSF/Motif Kits
In OS/2, the X Window System client support consists of an application program
interface (API) that creates the X program. This API lets you create an
application that uses the TCP/IP sockets system functions to communicate with
an X Window System server. As an application writer, you need to be concerned
only with the client API in writing your application.

The communication path from the OS/2 X Window System application to the
server involves the client code, the X Window System library, and the TCP/IP
library. The application program that you create is the client part of a
client-server relationship. The X server provides access to the resources that are

Chapter 1. Introduction 21

shared among many X applications, such as the screen, keyboard, mouse, fonts,
and graphics contexts.

X Window System Client Kit: The X Window System client has two purposes:

• To develop X Window applications to run on an OS/2 system.

• To run X Window applications on an OS/2 system.

In the X Window System, the notion of client and server is somewhat reversed.
Normally you think of yourself, or the program you are running on your PC, as a
client, which accesses shared resources such as disk storage or printers on a
server in another location.

However, with the X Window System, the resource that you share is the display,
which is attached to your workstation. Therefore, your workstation must function
as a server in order to share the display among several X client applications.

TCP/IP Version 2.0 for OS/2 is the first version of this product that includes the X
Window System client. In previous versions, you were able to have your TCP/IP
for OS/2 workstation function as an X server. This meant that you could execute
an X client application on a remote system such as an RS/6000, and the
presentation information was displayed on your own OS/2 workstation using X
protocol and the X server functions.

The X Window System client provides you with the ability to develop X Window
applications for the OS/2 platform and then also run them on the same platform.
Your workstation is now equipped to function as both an X Window client and
server.

The X Window System client includes two parts. The X Window System client kit
contains the executable sample X client applications, and can be installed on
either a FAT or an HPFS file system. The X Window System Client programmer′s
toolkit contains all the libraries, the header files, and the source files for the
sample applications, that you need to create your own X client applications. The
programmer ′s toolkit must be installed on an HPFS file system.

Note: If you want to develop or execute an OSF/Motif application, you need the
OSF/Motif kit.

X Window Structure: The X Window System client kit includes the following
layers shown in Figure 6 on page 23.

22 X Window System Guide

Figure 6. X Window Application Layers

The X Library (Xlib): The X Window System client contains the X library (Xlib), a
set of low-level application functions that provide access to, and control of, the
display, its windows, and the input devices. Xlib is the fundamental layer that
supports the intrinsics and widgets that are included in the X Window System
client.

The X Toolkit (Xt) Intrinsics Library: The X Window System client contains the X
toolkit library (Xt) intrinsics library, on the top of the X library, which allows you
to simplify the design of applications by providing an underlying set of common
user interface functions. Xt provides an improved approach to GUI programming.
It creates a general mechanism for producing reusable user-interface
components, and provides routines for creating and using user-interface
components called widgets. For more information on the X toolkit library read
the X Window Client System Guide.

The Widget Sets: The X Window System client provides you with the Athena
widget set.

You can obtain the OSF/Motif widget set that is separately available in the
TCP/IP for OS/2 OSF/Motif kit.

A widget set is a collection of separate widgets. The widget is the fundamental
data type in the X Window System client. Widgets generally provide a user
interface component, such as, scroll bar, a text-entry field, or a menu. Widgets
are allocated dynamically and contain state information. Each widget belongs to
a widget class that is allocated statically and initialized. The widget class
contains the operations allowed on widgets of that class.

Chapter 1. Introduction 23

OSF/Motif Widget Set: You can separately order the TCP/IP for OS/2 OSF/Motif
kit. It contains the OSF/Motif widget set, which implements user interface
components, such as scroll bars, menus, and buttons. You can combine the
OSF/Motif widget set with the Xt Intrinsics and Xlib to construct a Motif
application. For more information about the OSF/Motif widget set, refer to X
Window System client Guide.

1.3.5 DOS
IBM does not currently provide an X Window System product for DOS. In order
to investigate X Windows on the DOS platform we used the product
HCL-eXceed** from Hummingbird Communications Ltd. (HCL) of Markham,
Ontario, Canada.

HCL has two flavors of HCL-eXceed available:

 1. HCL-eXceed/DOS V3.3, which runs under DOS and provides its own X
Window manager called hwm. However, you can start your own X Window
manager such as the Motif window manager.

 2. HCL-eXceed/W V3.3.3, which runs under Microsoft Windows 3 for DOS and
uses Microsoft Windows as the X Window manager.

For the purpose of this book we worked mainly with HCL-eXceed/W V3.3.3 and
used IBM′s TCP/IP Version 2.1.1 for DOS (Program Number 5621-219) under DOS
Version 6.1. We used Microsoft Windows Version 3.1.

HCL-eXceed/W provides an X Window server for the DOS environment. The
support provided is equivalent to Version 11 Release 5 (X11R5) of the X Window
System server as defined by MIT. It enables X client application programs to
display output in a Microsoft Windows for DOS window. The X client applications
can reside on one or more system platforms that support the X client function.
They communicate with the HCL-eXceed server across a TCP/IP network.
Examples of IBM platforms that can support X client applications and can
communicate with an HCL-eXceed server include MVS, VM, OS/2 and AIX.

The HCL-eXceed server provides the following features (for further details,
please refer to the HCL-eXeed/W for Microsoft Windows User′s Guide available
with the product):

• Use of Microsoft Windows for DOS as the X Window Manager. This allows
the user to take advantage of the functions provided by Microsoft Windows
such as cut and paste between windows, and support for either a two- or
three-button mouse.

• An interactive configuration utility for customizing such things as server and
communication options, colors, fonts and keyboard mapping.

• An automatic client starter that supports the creation of icons for regularly
accessed client applications. The user can click on the icon to open a
window that will use REXEC or RSH to start up the X client application on a
remote host. Of course, the host must support REXEC or RSH.

• A font compiler that allows the user to import fonts that are of the standard
.BDF or .PCF format and add them to the library of fonts available to
HCL-eXceed (.FON format).

24 X Window System Guide

Chapter 2. Installation

2.1 ITSO Network Configuration
For the purpose of this document we worked on a number of X Window
System-capable platforms. These systems are installed at the International
Technical Support Organization (ITSO) Center at Raleigh. The network
configuration with each of the X Window System platforms that we used is
illustrated in Figure 7.

Figure 7. Component of the Network Configuration at the ITSO Raleigh

2.2 MVS
The following steps are a guide to installing the X Window System under MVS.
The description is divided into two parts as follows:

 1. Installation Verification for the X Window System API

 2. Installing the X Window System GDDM Interface

It is assumed that the base TCP/IP product has been installed on your MVS
system.

 Copyright IBM Corp. 1992, 1994 25

2.2.1 Installation Verification for the MVS X Window System API
The X Window System is installed with the other target libraries when TCP/IP is
installed under MVS. All that needs to be done is to verify that the API is ready
to accept calls from an X client application.

IBM provides three sample programs with TCP/IP for MVS. They are called
XSAMP1, XSAMP2 and XSAMP3. These C programs have already been
compiled and link-edited and can be found in tcpip.SEZALINK, where tcpip is the
high-level data set name qualifier under which the TCP/IP libraries are installed.

It may be that the TCP/IP for MVS on your system is accessing a common
system LINKLIB. If this is the case, you can check in one of two places to
determine which LINKLIB TCP/IP is accessing:

 1. Check the STEPLIB DD statement in the TCP/IP startup procedure.

 2. Look in SYS1.PARMLIB(LNKLSTxx) for a clue as to which is the authorized
LINKLIB.

In order to verify the installation of the API you must do the following:

 1. Ensure that the X server has authorized the MVS host as an X client. For
specific details on how to do this please refer to 4.1.6, “Controlling X Client
Access to AIX/6000” on page 125 when AIX is the X server, 4.2.4,
“Controlling X Client Access to OS/2” on page 132 when OS/2 is the X
server, and 4.3.1.4, “Controlling X Client Access” on page 153 for a DOS X
server.

 2. From the TSO command prompt type:

XSAMPn -display <X client display variable>

where n=2 or 3 and client display variable is the variable that the X client
must use to access the X server. It has the format host:0.0 where host is the
Internet address of the X server and 0.0 represents the target server.server
screen. For example, when using our OS/2 machine as the X server, since it
had the Internet address 9.24.104.51, we typed the command:

XSAMP2 -display 9.24.104.51:0.0

Also try this for XSAMP3. Note that in the case of XSAMP1, the display
variable is not supported so you will need to preset the variable as
described in 3. below. You may then load XSAMP1.

The displays you will see at an OS/2 X server are illustrated in Figure 8 on
page 27 for XSAMP1, Figure 9 on page 27 for XSAMP2, and Figure 10 on
page 27 for XSAMP3.

XSAMP1 opens a display at the X server for 60 seconds and then closes it.
The best way to end either XSAMP2 or XSAMP3 is to close the window at the
X server.

26 X Window System Guide

Figure 8. Display at an OS/2 X Server for XSAMP1 Sample X Client Program

Figure 9. Display at an OS/2 X Server for XSAMP2 Sample X Client Program

Figure 10. Display at an OS/2 X Server for XSAMP3 Sample X Client Program

 3. Once you have verified the API using XSAMP1, XSAMP2 and XSAMP3 you
can set up an X client display variable data set. This means that you will not
need to type in the X client display variable each time you invoke the X client
program. Allocate a data set called userid.XWINDOWS.DISPLAY where
userid is the TSO user ID under which the X client application will be started.
This data set should be sequential, fixed block with a record length of 80
bytes. The contents of this data set are illustrated in Figure 11.

9.24.104.51:0.0

Figure 11. Example of the Contents of userid.XWINDOWS.DISPLAY Data Set

Look out for the following in userid.XWINDOWS.DISPLAY: when you add the
entry to this dataset using the ISPF editor, you may end up with numbers in
the far right columns of the data set. This will result in the error message
Error: Can′ t Open Display. You must correct this by deleting the characters
to the right of the X client display variable if your ISPF editor profile is set
with numbers off or by using the UNNUM command if your ISPF profile is set
with numbers on.

Chapter 2. Installation 27

2.2.2 Installing the MVS X Window System GDDM Interface
The X Window System GDDM interface must be installed and activated in order
for a GDDM application to send its output to an X server for display using the X
protocol. The executable code for the X Window System GDDM interface must
be in tcpip.SEZALINK, where tcpip is the high-level data set name qualifier under
which all of the TCP/IP libraries are installed.

As discussed previously, you can check in one of two places to determine which
LINKLIB TCP/IP for MVS on your system is accessing:

 1. Check the STEPLIB DD statement in the TCP/IP startup procedure.

 2. Look in SYS1.PARMLIB(LNKLSTxx) for a clue as to which is the authorized
LINKLIB.

2.2.2.1 Installation Steps
The following steps provide a guide to installing the X Window System GDDM
interface under MVS:

 1. Allocate a partit ioned data set for your user CLISTs. You could call the data
set userid.tcpip.CLIST, where userid is your TSO user ID. This data set name
will be assumed for the following discussion.

 2. Copy the members INSTGDXD and GDDMXD from tcpip.SEZAINST into
userid.TCPIP.CLIST. You do not need to modify these CLISTs at all.

 3. Ensure that the following members are in tcpip.SEZALINK:

• GDXLIOX0
• EZAADMLR
• KEYCODE
• GXDEMO1
• GXDEMO2
• GXDEMO3
• GXDEMO4
• GXDEMO4A
• GXDEMO5
• GXDEMO6

 4. The X Window System GDDM interface is installed by invoking the CLIST
INSTGDXD. Enter the following command from the TSO command prompt:

EXEC TCPIP(INSTGDXD) ′ GDXDLOAD(tcpip.SEZALINK),
GDXIN(tcpip.SEZACMTX), GDDMLOAD(gddm.GDDMLOAD),
GDDMLIB(gddm.GDDMLIB)′

where:

tcpip.SEZALINK is the full name of the SEZALINK that TCP/IP is
accessing on your sytem.

gddm.GDDMLOAD is the full name of GDDMLOAD library on your system.

gddm.GDDMLIB is the full name of GDDMLIB library on your system.

The CLIST INSTGDXD performs the following:

a. Link-edits the module EZAADMLR and replaces it back into
tcpip.SEZALINK.

28 X Window System Guide

b. Link-edits the demonstration program load modules GXDEMO1 through
GXDEMO6 and replaces them back into tcpip.SEZALINK.

 5. Ensure that INSTGDXD runs with a return code of 0.

A point to note is that the blocksize of gddm.GDDMLOAD and gddm.GDDMLIB
needs to be greater than or equal to the blocksize for tcpip.LINKLIB. If this is
not the case then INSTGDXD will run with a severity code of 4.

2.2.2.2 Installation Verification
Use the following tasks as a guide to testing the installation of the X Window
System GDDM interface.

 1. Each time you want to activate the X Window System GDDM interface you
must establish a STEPLIB that includes the following data sets:

tcpip.SEZALINK is the SEZALINK which contains the executable X
Window System GDDM interface code.

pli.SIBMLINK is the full name of the PLI common library on your
system.

c370.SEDCLINK is the full name of the C/370 runtime library on your
system.

gddm.gddmload is the full name of the GDDM load library on your
system.

If you have those libraries already defined in your link library you don′ t need
to access them via a steplib.

We found the easiest way to establish this steplib was to create a CLIST and
then execute it each time we wanted to activate the X Window system GDDM
interface. We called the CLIST GDDMX and placed it in userid.TCPIP.CLIST.
An example of this CLIST is shown in Figure 12. You invoke this CLIST from
the TSO command by typing:

EXEC BIN(GDDMX)

ISPEXEC LIBDEF ISPLLIB DATASET +
ID(′ SYS1.TCPIP.V2R2M1.SEZALINK′ +

′ GDDM.V2R3.GDDMLOAD′ +
′ PLI.V2R3M0.SIBMLINK′ +
′ C370.V2R1M0.SEDCLINK′) UNCOND

ALLOC F(ADMSYMBL) DA(′ GDDM.V2R3.GDDMSYM′) SH

Figure 12. Example of the STEPLIB CLIST for the X Window System GDDM Interface

 2. Activate the X Window System GDDM interface by executing the CLIST
GDDMXD that you copied in to userid.TCPIP.CLIST by typing the following at
the TSO command prompt:

EXEC TCPIP(GDDMXD)

You will be prompted for a positional parameter to which you need to enter:

Chapter 2. Installation 29

ON

You should see the message GDDMXD/MVS ACTIVE.

 3. IBM has provided some sample programs that allow you to test the X
Window System GDDM interface under MVS.

In order to run these demonstration programs you need to do the following:

a. Ensure that the X server has authorized the MVS host as an X client. For
specific details on how to do this please refer to 4.1.6, “Controlling X
Client Access to AIX/6000” on page 125 for AIX as the X server, 4.2.4,
“Controlling X Client Access to OS/2” on page 132 when OS/2 is the X
server, and 4.3.1.4, “Controlling X Client Access” on page 153 for a DOS
X server.

b. Set up an X client display variable data set in order to identify the X
server target display. This data set is called
userid.XWINDOWS.DISPLAY. Please refer to 2.2.1, “Installation
Verification for the MVS X Window System API” on page 26 for more
information on this data set. The contents of this data set are illustrated
in Figure 11 on page 27.

 c. In order to interact with the sample programs using the X server
keyboard you will need to alter the keyboard mapping for the Enter key.
We discovered that the default keyboard mappings provided with the X
Window Systems for both OS/2 and AIX had the Enter key set to the
keysym name RETURN. You need to remap this key′s keysym name to
EXECUTE. Please refer to 4.2.2.1, “Remapping the Keyboard under
OS/2” on page 128 for a description of how to perform the remapping
with OS/2 and 4.1.5, “Remapping the Keyboard Under AIX/6000” on
page 123 for AIX.

d. Execute the sample programs GXDEMO1 through GXDEMO6 from the
TSO command prompt. Each program displays a series of frames. You
can progress through the frames by pressing the Enter key. The
application will close the window and end after the last frame.

An example of the first frame for GXDEMO1 is illustrated in Figure 13.

Figure 13. Display at an OS/2 X Server for the GXDEMO1 First Frame

30 X Window System Guide

At the TSO screen you will get the messages:

GDDMXD: File GDXALTCS PSS not found. No alternative character set.

This is an informational message and does not indicate an error.
GDXALTCS.PSS is an alternate APL2 character set mapping. For more
information on this data set please refer to 3.1.3.2, “APL2 Character Set
Keyboard for GDDM under MVS” on page 76.

2.3 VM
The following is a guide to installing the X Window System under VM. The
description is divided into two parts as follows:

 1. Installation Verification for the X Window System API

 2. Installing the X Window System GDDM Interface

It is assumed that the base TCP/IP product has been installed on your VM
system and uses the minidisk addressing convention as described in TCP/IP
Version 2 Release 2 for VM: Planning and Customization. This convention means
that TCPMAINT controls the following minidisks:

• TCPMAINT user A disk (191)
• Client code disk (592)
• Server code disk (591)
• Service (PTF) disk (2C1)
• Source code disk (5C3)
• Samples disk (5C4)

2.3.1 Installation Verification for the VM X Window System API
The X Window system code is installed on the TCPMAINT client code disk at
address 592. All that needs to be done is to verify that the API is ready to accept
calls from an X client application.

IBM provides three sample programs with TCP/IP for VM. They are identical to
those provided with MVS and are called XSAMP1, XSAMP2 and XSAMP3. In
order to execute them they need to be compiled and link-edited as follows:

 1. You need to have access to the following disks:

• TCPMAINT 592 minidisk for TCP/IP client code
• TCPMAINT 5C4 minidisk for the sample programs
• The minidisk that has the C/370 compiler

If you have the required authority you can access a disk under VM by typing
the following command at the CMS prompt:

LINK machine xxx yyy RR
ACC yyy z

where machine is the virtual machine that owns the minidisk, xxx is the
address of the minidisk, yyy is the virtual address that the minidisk will be
known to your virtual machine and z is the mode. For the following
discussion we have assumed that xxx equals yyy.

 2. On the 5C4 minidisk you wil l find the following sample source files:

• XSAMP1 C

Chapter 2. Installation 31

• XSAMP2 C
• XSAMP3 C

 3. Compile and link-edit XSAMP1 by doing the following:

a. Set the LOADLIB and TXTLIB search order using the following CMS
commands:

SET LDRTBLS 25
GLOBAL LOADLIB EDCLINK
GLOBAL TXTLIB X11LIB COMMTXT EDCBASE IBMLIB CMSLIB

b. Compile XSAMP1 C using the following command:

CC XSAMP1 (DEFINE(IBMCPP)

This creates XSAMP1 TEXT on your A disk.

 c. Link-edit XSAMP1 using the following command:

CMOD XSAMP1

This creates XSAMP1 MODULE on your A disk.

 4. Ensure that the X server has authorized the VM host as an X client. For
specific details on how to do this please refer to 4.1.6, “Controlling X Client
Access to AIX/6000” on page 125 for AIX as the X server, 4.2.4, “Controlling
X Client Access to OS/2” on page 132 when OS/2 is the X server, and 4.3.1.4,
“Controlling X Client Access” on page 153 for a DOS X server.

 5. Identify the target X server display using the following CMS command:

GLOBALV SELECT CENV SET DISPLAY <X client display variable>

where <X cl ient display var iable> is the variable that the X client must use
to access the X server. It has the format host:0.0 where host is the Internet
address of the X server and 0.0 represents the target server.server screen.
For example, when using our OS/2 machine as the X server, since it had the
Internet address 9.67.38.89, we typed the command:

GLOBALV SELECT CENV SET DISPLAY 9.67.38.89:0.0

 6. Run XSAMP1 by simply typing XSAMP1 at the CMS command line.

XSAMP1 opens a display at the X server for 60 seconds and then closes it.
The display is illustrated in Figure 8 on page 27.

 7. The process for compiling and link-editing XSAMP2 is the same as for
XSAMP1 except for setting the LOADLIB and TXTLIB search order:

SET LDRTBLS 25
GLOBAL LOADLIB EDCLINK
GLOBAL TXTLIB XAWLIB XTLIB X11LIB COMMTXT EDCBASE IBMLIB CMSLIB

32 X Window System Guide

This is because XSAMP2 uses some of the intrinsics in the Xt library (XTLIB)
and some of the widgets from the Athena widget set library (XAWLIB).

 8. When you compile XSAMP2 you wil l see the following warning:

WARNING EDC0244 XSAMP2 C D1:106 External name fallback_resources
has been truncated to FALLBACK.

This is normal.

 9. When you execute XSAMP2 you wil l see a window as illustrated in Figure 9
on page 27. The best way to end XSAMP2 is to close down the window at
the X server.

10. The process for compiling and link-editing XSAMP3 is the same as for
XSAMP1 and XSAMP2 except for setting the LOADLIB and TXTLIB search
order:

SET LDRTBLS 25
GLOBAL LOADLIB EDCLINK
GLOBAL TXTLIB XMLIB XTLIB X11LIB COMMTXT EDCBASE IBMLIB CMSLIB

This is because XSAMP3 uses some of the intrinsics in the Xt library (XTLIB)
and some of the widgets from the OSF/Motif widget set library (XMLIB).

11. When you execute XSAMP3 you will see a window as illustrated in Figure 10
on page 27. The best way to end XSAMP3 is to close down the window at
the X server.

 Note:

Ensure that your virtual machine has sufficient virtual storage for the compile
and link-edit steps. Otherwise these steps will fail with a severe error:

Virtual Storage Exceeded.

2.3.2 Installing the VM X Window System GDDM Interface
The X Window System GDDM interface must be installed and activated in order
for a GDDM application to send its output to an X server for display using the X
protocol.

When installing the X Window System GDDM interface, the GDDM shared
segment needs to be reinstalled. A shared segment is a mechanism that VM
uses to make executable modules available in a single image for use by multiple
users. If a shared segment was not used, each user would need a copy of the
executable code running within their own virtual machine. Using a segment
saves VM resources and greatly improves the performance of applications under
VM.

The GDDM shared segment is for GDDM modules and improves the performance
of GDDM applications. It needs to be reinstalled with the X Window System
GDDM interface to allow the interface modules to access the shared segment.

Note: For our VM system we opted to make a copy of the GDDM shared
segment for use by the X Window System GDDM interface modules. This is
because if we reinstalled the existing named GDDM shared segment we would

Chapter 2. Installation 33

need to reassemble the bootstrap modules for each of the products that use
GDDM.

If you elect to make a new named copy of the GDDM shared segment then you
will need to zap the modules for those products that will be used with the new
GDDM shared segment for the X Window System GDDM interface. This needs to
be done to point the module at the new named GDDM shared segment that must
be accessed for the X Window System GDDM interface. Please refer to 3.2.3,
“Using GDDM Applications under VM” on page 87 for more information on
zapping modules.

2.3.2.1 Installation Steps
The following steps provide a guide to installing the X Window System GDDM
interface under VM:

 1. Ensure that you have access to the TCPMAINT 592 minidisk on which you
will find the following files:

GDDMXD TXTLIB is the executable code.

INSTGDXD EXEC is the installation EXEC.

GDDMXD EXEC activates and deactivates the X Window System GDDM
interface.

COMMTXT TXTLIB is the common TCP/IP text library.

X11LIB TXTLIB is the X Window function library.

GDXALTCS PSS is an alternative character set for APL2.

GDXAPLCS SAMPMAP is a sample keyboard mapping for APL2.

 2. Ensure that you are linked to the GDDM minidisk and have access to the
following files:

• ADMBLSEG EXEC
• ADMGLIB TXTLIB
• ADMNLIB TXTLIB
• ADMPLIB TXTLIB

 3. Ensure that you are linked to the C/370 minidisk and have access to the
C/370 runtime library, IBMLIB TXTLIB.

 4. Before running the installation EXEC, you need to define the GDDM shared
segment that will be available to the X Window System GDDM interface. You
need to know the name and the spool location of the existing GDDM shared
segment. This will be installation dependent and can be determined by
typing the following command from the CMS command line:

Q NSS NAME filename MAP

where filename is the name of the existing saved shared segment. This will
give you the beginning and end segment locations for the shared segment.

For example the segment name that was defined when GDDM was installed
for VM on our machine was ADMXA230. We issued the command:

Q NSS NAME ADMXA230 MAP

which produced the output as illustrated in Figure 14 on page 35.

34 X Window System Guide

Note: You need to have a CP privilege class E to execute this command.

FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
0325 ADMXA230 DCSS N/A 04000 042FF SR P 00001 N/A N/A
0443 ADMXA230 DCSS N/A 04000 042FF SR A 00000 N/A N/A
Ready; T=0.01/0.01 17:55:13

Figure 14. Example of the Output from the Q NSS NAME Command on VM

 5. Define the new GDDM shared segment by typing the following command:

DEFSAG <new segment name> begpag-endpag SR

where:

• <new segment name> is the new name of the shared segment.
• begpag is the segment start location.
• endpag is the segment end location.
• SR means share/read.

You must use the begpag and endpag values that were returned from the Q
NSS NAME command. Refer to the example illustrated in Figure 14. On our
VM system we typed:

DEFSEG GDDMXD 4000-42FF

where GDDMXD is the name we selected for the GDDM shared segment to
be reinstalled.

 6. The X Window System GDDM interface is actually installed by invoking the
exec INSTGDXD. Start this at the CMS command prompt.

 7. During the execution of INSTGDXD you will be need to respond to prompts
as follows:

a. Which are the products for which you want saved segments installed?
The options are GDDM, PGF, IMD, IVU. You only need to choose GDDM.

b. What is the name of the saved segment? Enter the name you choose
when you defined the saved segment using the DEFSEG command. In
our installation we used GDDMXD.

 c. Do you want to include the Image Symbol Editor routines? Respond YES.

d. Do you want to include the Image Processing routines? Respond YES.

The INSTGDXD performs the following:

a. Builds the following load modules and places them on your A disk.

• GDXLIOX0 MODULE
• GDXCLOSE MODULE
• GDXADML1 MODULE
• KEYCODE MODULE

b. Builds the demonstration load modules GXDEMO1 through GXDEMO6
and places them on your A disk.

 c. Builds the GDXBLSEG EXEC and invokes it to create the GDDM shared
segment.

Chapter 2. Installation 35

 8. Ensure that INSTGDXD runs with no errors. While it is running INSTGDXD
provides you with messages to indicate the step that is currently executing.
An example of the last messages you should see for a successful run are
illustrated in Figure 15 on page 36.

*** Segment name: GDDMXD Start address: 04000000...

*** Loading TEXT decks....
Saved segment GDDMXD was successfully saved in fileid 0444.
*** GDDM DCSS build complete.

*** ADMBLSEG complete for chosen products
Ready; T=3.00/4.51 17:57:50

Figure 15. Example of a Successful Run for INSTGDXD

 9. You can check that the GDDM shared segment has been installed
successfully by issuing the following command:

Q NSS NAME <new segment name> MAP

where <new segment name> is the name of the GDDM shared segment
just created by INSTGDXD. Notice that the class of this segment is A, which
means available.

10. Copy the modules built by INSTGDXD from your A disk across to a minidisk
such as the TCPMAINT 592 disk so that they may be commonly accessed.

2.3.2.2 Installation Verification
Use the following steps as a guide to verifying the installation of the X Window
System GDDM interface for VM.

 1. IBM provides some sample programs that allow you to test the X Window
System GDDM interface under VM. Before running these programs you
need to do a number of tasks. In fact, each time you want to have a GDDM
application display its output through the X Window System GDDM interface
to an X server you must do these same tasks as follows:

a. Ensure you have access to the TCPMAINT 592 minidisk, the GDDM
minidisk and the minidisk that holds the C/370 libraries.

b. For VM/XA* systems only, enter the following command from the CMS
command prompt:

SET STORECLR ENDCMD

This ensures that GETMAIN requests by the X Window System GDDM
interface code are processed correctly.

 c. Activate the X Window System GDDM interface by issuing the following
command:

GDDMXD ON

You should see the message GDDMXD/VM active.

36 X Window System Guide

d. Set the following CMS global variables by issuing these three
commands:

SET LDRTBLS 25
GLOBAL LOADLIB EDCLINK
GLOBAL TXTLIB ADMNLIB GDDMXD ADMPLIB ADMGLIB X11LIB COMMTXT IBMLIB
EDCBASE CMSLIB

e. Identify the target X server display using the following CMS command:

GLOBALV SELECT CENV SET DISPLAY <X client display variable>

where <X cl ient display var iable> is the variable that the X client must
use to access the X server. It has the format host:0.0 where host is the
internet address of the X server and 0.0 represents the target
server.server screen. For example, when using our OS/2 machine as the
X server, since it had the Internet address 9.67.38.89, we typed the
command:

GLOBALV SELECT CENV SET DISPLAY 9.67.38.89:0.0

 2. Ensure that the X server has authorized the VM host as an X client. For
specific details on how to do this please refer to 4.1.6, “Controlling X Client
Access to AIX/6000” on page 125 for AIX as the X server, 4.2.4, “Controlling
X Client Access to OS/2” on page 132 when OS/2 is the X server, and 4.3.1.4,
“Controlling X Client Access” on page 153 for a DOS X server.

 3. In order to interact with the sample programs using the X server keyboard
you will need to alter the keyboard mapping for the Enter key. We
discovered that the default keyboard mappings provided with the X Window
Systems for both OS/2 and AIX had the Enter key set to the keysym name
RETURN. You need to remap this key′s keysym name to EXECUTE. Please
refer to 4.2.2.1, “Remapping the Keyboard under OS/2” on page 128 for a
description of how to perform the remapping with OS/2 and 4.1.5,
“Remapping the Keyboard Under AIX/6000” on page 123 for AIX.

 4. Execute the sample programs GXDEMO1, GXDEMO2, GXDEMO3 GXDEMO4,
GXDEMO4A, GXDEMO5 and GXDEMO6 from the CMS command prompt.
Each program displays a series of frames that you can progress through by
pressing the Enter key. The application will close the window at the X server
and end after the last frame.

An example of the first frame for GXDEMO1 is illustrated in Figure 13 on
page 30.

Chapter 2. Installation 37

Note:

The GXDEMOx programs will not open a window at the X server and will
simply display output to your 3270 terminal if you have opted to reinstall
the GDDM shared segment with a new name. This is because the
GXDEMOx programs are built by INSTGDXD before the new GDDM
shared segment is installed which means that they point to the existing
named shared segment.

To fix this you need to zap the GXDEMOx modules to point to the new
named shared segment. Please refer to Appendix C, “Information on
Zapping the VM GXDEMOx Programs” on page 177 for more information
on how to zap modules.

2.4 AIX
The following section describes the installation of the 2D feature of AIXwindows
Environment/6000. AIX V3.2.5 was the base operating system used for the
activities documented below.

There are several ways to install the software. For our installation we used the
internal 2.3 GB tape /dev/rmt0. To complete the installation you can use either a
graphic display or an ASCII terminal. It is your decision which images you want
to install.

The licensed program product AIXwindows Environment/6000 for the IBM RISC
System/6000 is packed in several images. The images that you will install will
depend upon your installation requirements; however, we recommend the
installation of the following images:

X11rte.obj
X11rte.ext.obj
X11dev.obj
X11dev.src
X11dev.motif1.2.obj
X11dev.motif1.2.src
X11dev.im
X11fnt.iso88591.aix.fnt
X11fnt.bim850.pc.fnt
X11deviEn_US.info
X11En_US.msg

The minimum installation is the X11rte.obj image which provides the X11 runtime
environment. If, in addition to running X11 applications, the development of such
applications is required then you should install the X11dev images.

The list in Table 3 on page 41 shows you the contents of the images.

38 X Window System Guide

2.4.1 Basic Installation
Please use the following steps as a guide to installing AIXwindows Environment
on a AIX RISC System/6000. The following steps are for a system with the
En_US language environment. If you have another language environment please
refer to the documentation and the messages in your own language.

 1. Log in as root.

 2. Insert the tape with the software into your tape drive. Make sure that your
device is available. Type the command:

lsdev -C -c tape

Your output should look similar to this:

rmt0 Available 00-08-00-20 2.3 GB 8mm Tape Drive

 3. On the command prompt enter:

smitty

Starting from the System Management menu select the following options:

• Software Installation & Maintenance

• Install / Update Software

• Install / Update Selectable Software (Custom Install)

• Install Software Products at Latest Available Level

 4. You get the menu Install Software Products at Latest Available Level from
where you can select the input device. Press F4 to get the list of the
possible devices. Select the device on which you have inserted the tape by
pressing the Enter key.

 5. Now you get a screen like this:

Chapter 2. Installation 39

� �
Install Software Products at Latest Available Level

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
*INPUT device / directory for software /dev/rmt0.1
*SOFTWARE to install [all] +
 Automatically install PREREQUISITE software? yes +
 COMMIT software? yes +
 SAVE replaced files? no +
 VERIFY software? no +
 EXTEND file systems if space needed? yes +
 REMOVE input file after installation? no +
 OVERWRITE existing version? no +
 ALTERNATE save directory [] + +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Undo F6=Command F7=Edit F8=Image
F9=Shell F10=Exit� �

Figure 16. SMIT Installation Menu

The values shown above in the entry fields are the default values.

The entry fields and their associated values are explained below:

INPUT device This means the device you mounted the
installation tape on.

SOFTWARE to install By pressing F4 you get a list of the products
that are on the tape.

PREREQUISITE software To be sure that all prerequisite software will
be installed, leave this parameter as yes.

COMMIT software Commit means that you cannot remove the
current level of the software to be installed.
When you choose not to commit you need
additional disk space for the save of the
previous version. We recommend to use the
parameter no. The software will be applied
and you can remove the software after
installation.

SAVE replaced files If you choose no for the Commit option you
should set this parameter to yes.

VERIFY software If you want to be sure that your installation
will be checked, set this parameter to yes.

EXTEND Set this parameter to yes to be sure that there
is enough space on your file system for the
installation (you must have enough free
physical partitions for this option to work
correctly).

40 X Window System Guide

REMOVE Has no effect for installation from tape.

ALTERNATE You can specify here a directory of your
choice, instead of the default, to save
replaced files (see option above).

 6. Move the cursor to the field *SOFTWARE to install? and press F4. A list wil l
be shown where you can select the desired items with the F7 key. Press
Enter to complete the selection. Until this point you can quit the installation
by either pressing the F3 or the F10 key. When you press Enter, the
installation will start.

Note: On the upper left corner you see the string running. This is the only
indication that the installation is running. You have to wait until the string
changes to ok. If the string displays failed, refer to your system
administrator.

 7. When you see the ok string on the upper left corner, then the installation was
successful, and you can begin either with customization or starting
AIXwindows as described below.

To start the X server your workstation must be equipped with a graphic display.
It is possible to start the X server without customization after the installation. To
start the X server you first need to log in at your graphic display. You may then
enter either the xinit or startx commands at the command line in order to start
the X server. The startx command is the preferred method of starting as it is
streamlined and includes such functions as setting the user′s DISPLAY
environment variable. Don′ t switch your session when the X server is starting.
The display will change to gray and you will see an hour glass in the middle of
the screen. After that the xclock client, an aixterm window, the Power Desktop
window, and the Motif Window Manager will be started.

To quit the X server press Alt, Ctrl and the Backspace key together. Don′ t worry
if you see an error message. This may happen if there are still clients running
on your display when you exit.

2.4.2 AIXwindows Environment/6000 Images

Table 3 (Page 1 of 2). Contents of AIXwindows Environment/6000

Image Content

X11rte.obj AIXwindows Run Time Environment includes:

• AIXwindows Motif V1.2 Run Time Environment

• X Windows Run Time Environment

X11rte.ext.obj AIXwindows Run Time Environment Extensions
includes:

• X Windows Run Time Environment Extensions

X11dev.im

X11dev.motif1.2.obj

X11dev.motif1.2.src

X11dev.obj

X11dev.src

AIXwindows Development Environment includes:

• AIXwindows Development Sample Input Method
Servers

• AIXwindows Motif V1.2 Libraries and Include Files

• AIXwindows Motif V1.2 Sample Programs

• X Windows Development Environment

• X Windows Development Environment Unsupported
Source

Chapter 2. Installation 41

Version 3.2 of the AIX operating system for the RISC System/6000 (AIX/6000) is a
prerequisite for the installation of AIXwindows Environment/6000. It is not
necessary that TCP/IP be installed, because the X server and X clients can run
on the same host. However, TCP/IP is required if the RISC System/6000 will be
used to communicate with remote client or server platforms.

The X11rte.obj image is a prerequisite for all other images of AIXwindows
Environment/6000.

Table 3 (Page 2 of 2). Contents of AIXwindows Environment/6000

Image Content

X11fnt.iso88591.aix.fnt AIXwindows Latin 1 (ISO8859-1) fonts

X11fnt.iso88592.fnt AIXwindows Latin 2 (ISO8859-2) fonts

X11fnt.iso88593.fnt AIXwindows Latin 3 (ISO8859-3) fonts

X11fnt.iso88594.fnt AIXwindows Latin 4 (ISO8859-4) fonts

X11fnt.iso88595.fnt AIXwindows Cyrillic 5 (ISO8859-5) fonts

X11fnt.iso88597.aix.fnt AIXwindows Greek 7 (ISO8859-7) fonts

X11fnt.iso88599.aix.fnt AIXwindows Turkish (ISO8859-1) fonts

X11fnt.ibm850.pc.fnt AIXwindows Latin 1 (IBM-850) fonts

X11kanji.aix.fnt AIXwindows Kanji fonts

X11fnt.coreX.fnt AIXwindows Core X11 Fonts

X11fnt.oldX.fnt MIT X11R3 contrib fonts: bmug, info-mac, oldx10 and
oldx11

2.5 OS/2
Below are details of how to install and setup the OS/2 X Window System server
(PMX).

2.5.1 Setting Up OS/2 X Window System Server
The OS/2 X Window System server (PMX) enables you to display and control X
Window System client application programs in OS/2 windowed sessions. These
client application programs can reside in one or more IBM or other computing
systems that support the X Window System client function. They are connected
to the PMX host through a TCP/IP network. IBM systems that currently have X
Window System client capability include OS/2, VM, MVS, and AIX* (RISC/6000).

PMX uses large amounts of memory. We recommend that your workstation has
at least 8MB of memory for the PMX component. The amount depends on which
X Window System client applications are running, and how much memory the
individual programs require.

To use PMX, you must have installed on your workstation the TCP/IP protocol
stack from the TCP/IP for OS/2 Base Kit. This chapter describes how to install
PMX in this environment.

Use the following steps as a guide to installing and customizing the X Window
System under OS/2.

42 X Window System Guide

It is assumed that the base TCP/IP product has been installed on your OS/2
system.

Prerequisite Programs : also In order to install and
use this kit, you must also have the following programs:

• IBM TCP/IP Version 2.0 for OS/2: Base Kit

• IBM OS/2 Version 2.0 with Service Pak applied, or higher

Memory Requirements : The following table shows the approximate memory
requirements for this kit. Note that the actual memory requirements depend
heavily on the mix of X applications that are used with the X window system
server.

Disk Space : it. The following table shows the
disk space required for this kit.

You should also ensure that you have enough free disk space for the OS/2
swapper. The SWAPPATH statement in your CONFIG.SYS file specifies on which
disk that free space must be.

Table 4. Memory Requirements

TCP/IP function Minimum Recommended Memory (MB)

X Window System server 8

Table 5. Disk Space Requirements

TCP/IP Kit Disk Space (MB)

X Window server Kit 11.7

Table 6. Disk Space Requirements for Swapper

Free Space for Swapper 10MB

2.5.2 Insta lling PMX
PMX includes the following components:

• PMX program (PMX.EXE)

• X Window System font support

• National language support for keyboards

• X Window System utilities

To install the PMX Kit using the Installation Program follow these steps:

 1. Insert the X Window System server installation diskette.

 2. At an OS/2 command prompt, type A:TCPINST and press Enter.

 3. Select the X Window System server kit.

You can also select installation of the BookManager softcopy publications
and the IBM Library Reader at this time.

 4. Select the Install pushbutton.

 5. Insert diskettes as prompted.

 6. Exit the program.

Chapter 2. Installation 43

 7. Restart your system to make the installation effective.

Figure 17. Installing X Window Server

2.5.3 System Level
We ran the described tests with the following system maintenance level. Note
that CSDs are regularly issued for the TCP/IP kits and it is strongly
recommended that you obtain and install such CSDs as they become available.
Please refer to the X Window System Server Guide for details on obtaining OS/2
TCP/IP CSDs either by FTP from software.watson.ibm.com or by downloading
from a bulletin board or by calling IBM service.

You can display the system maintenance level with the SYSLEVEL command.

� �
D:\TCPIP\SYSLEVEL.PMX

X-WINDOWS for TCP/IP on OS/2 2.0 and 2.1
Version 2.00 Component ID 562208600
Current CSD level: UN52841
Prior CSD level: UN00000� �

Figure 18. Syslevel f rom Test Installation

2.5.4 Setting PMX to Start Automatically
Most users will want to have PMX start automatically when they start their
workstations. You can use the configuration notebook program to achieve this.
The configuration notebook program adds the necessary definitions to the
startup.cmd file.

44 X Window System Guide

Figure 19. Automatic Startup from X Window System Server

For more information see the X Window System Server Guide, SC31-7070.

2.5.5 Setting Environment Variables
To function properly, PMX needs certain environment variables to be set on your
workstation. Environment variables can be set in two ways:

• In your CONFIG.SYS file (permanent)

• At an OS/2 prompt (temporary)

The following environment variables should be set:

• XFILES

Many of the database files (such as RGB.TXT) and fonts required by PMX for
initialization and operation are installed by default in a subdirectory named
X11.

You can locate the X11 subdirectory tree wherever you wish, as long as you
also set the corresponding environment variable XFILES. Since PMX does
not write to these files you can even locate them on a remote read-only
filesystem. For example, if XFILES=D:\TCPIP\X11, PMX looks for files it
needs in that subdirectory or its subdirectories.

• ETC

PMX uses the ETC environment variable to find the X0HOSTS file and as the
location for writing the PMX.LOG file. In the test installation it′s set to
ETC=D:\TCPIP\ETC. PMX writes and reads the PMX.INI file, which contains
the PMX settings from TCPIPCFG.

• DISPLAY

XINIT uses the DISPLAY environment variable to run XMODMAP. XINIT dis-
plays an error message and ends if it finds that DISPLAY has not been set.
The value for DISPLAY in our environment is display=9.24.104.51:0. You
must change it when you are using the X Window System client to display an
application on a remote X Window System server, but for test purposes take
your local IP address or nickname.

Chapter 2. Installation 45

If you do not set the environment variable in the CONFIG.SYS but in an OS/2
session, remember that it will only be set for that OS/2 session. Also, the setting
will be cleared when you shut off or reboot your workstation.

For more information see the X Window System Server Guide or the Help
function. The Help function is in this case very useful.

2.5.6 Starting PMX
You can start PMX in one of the following ways:

 1. Use the configuration notebook to specify that PMX is started whenever
TCP/IP is started. Refer to 2.5.4, “Setting PMX to Start Automatically” on
page 44 for information on how to specify the automatic starting of PMX
using the configuration notebook.

 2. Include PMX in an OS/2 Presentation Manager group and start it by clicking
on the PMX icon.

 3. Invoke PMX from an OS/2 command prompt.

 4. Run the command file XINIT.CMD, which is located in the X11\BIN directory.
We recommend using this method to start PMX. The command file gives you
the opportunity to start PMX only when needed and provides logic which
makes the startup more streamlined.

Once you have started up PMX you will see a Presentation Manager window
opened, as illustrated in Figure 20. This window is for the control of the PMX
server. All other windows are created through invoking client applications and
are called X client windows. These are also OS/2 Presentation Manager
windows which have Presentation Manager frames and title bars.

Figure 20. The PMX Control Window

It should be noted that PMX can only use PM′s built-in window manager for user
manipulation of X windows. Other X Window managers such as mwm cannot be
run with PMX.

The mouse that is typically used with OS/2 has two buttons. Most X Window
System implementations usually expect a mouse with three buttons and many X
client applications require a mouse with three buttons at the server. PMX
simulates a three button-mouse by supporting both buttons being pressed
together on an OS/2 mouse to represent the third button.

2.6 Installing OS/2 X Window System Client and OS/2 OSF/Motif Kits
This section explains how to install X Window System client and OSF/Motif Kit.
Before you install X Window System client, ensure that the required software is
installed and running on the workstation.

46 X Window System Guide

2.6.1 Requirements to Use X Window System Client and the OSF/Motif Kit
The X Window System client kit requires that the following be installed and
running on the OS/2 workstation:

• OS/2 2.x (32-bit)

• IBM TCP/IP Version 2.x for OS/2 (or comparable software that provides the
necessary protocol stack)

• For development of X Window applications, the IBM TCP/IP Programmer ′s
Toolkit

• For development of X Window applications, the High Performance File
System (HPFS)

• To run X Window System client applications locally, the X Window System
server

In addition to the above, the OSF/Motif kit requires that the X Window System
client be installed on the OS/2 workstation.

2.6.2 Installing the X Window System Client Files
You can install the executable sample X client programs, the X client
programmer ′s toolkit, or both. However, the programmer′s toolkit can be
installed only to a disk formatted with the HPFS option.

To check which kind of filesystem you are using use the CHKDSK command.

You can also select installation of the BookManager softcopy publications and
the IBM Library Reader at this time.

To install just the X Window System client executable files, either to a FAT or an
HPFS file system, do the following:

 1. Insert the X Window System client diskette in your diskette drive.

 2. At the A: prompt, enter TCPINST.

 3. The TCP/IP Installation window is displayed.

 4. Select X Client Runtime Services and select Install.

2.6.3 Installing the Programmer ′s Toolkit
To install the X Window System client programmer′s toolkit to an HPFS file
system, do the following:

 1. Insert the X Window System client diskette in your diskette drive.

 2. At the A: prompt, enter TCPINST. The TCP/IP Installation window is displayed.

 3. Select X Client Programmer ′s Toolkit and select Install.

You can also install both kits at the same time. See Figure 21 on page 48.

Chapter 2. Installation 47

Figure 21. Installing X Window System Client

2.6.4 Installing the OSF/Motif Kit Files
You can install the executable sample Motif programs, the Motif programmer′s
toolkit, or both. However, the programmer′s toolkit can be installed only to a disk
formatted with the HPFS option.

To install just the OSF/Motif kit executable files, either to a FAT or an HPFS file
system, do the following:

 1. Insert the OSF/Motif diskette in your diskette drive.

 2. At the A: prompt, enter TCPINST. The TCP/IP Installation window is displayed.

 3. Select OSF/Motif Runtime Services and select Install.

To install the OSF/Motif kit programmer′s toolkit to an HPFS file system, do the
following:

 1. Insert the OSF/Motif diskette in your diskette drive.

 2. At the A: prompt, enter TCPINST. The TCP/IP Installation window is displayed.

 3. Select OSF/Motif Programmer ′s Toolkit and select Install.

You can also install both kits at the same time. See Figure 22 on page 49.

48 X Window System Guide

Figure 22. Installing X Window System Client

CSDs are regular issued for the TCP/IP kits and these should be obtained
through normal channels and installed.

You can display the system maintenance level with the SYSLEVEL command.

� �
D:\TCPIP\SYSLEVEL.XCL

X-CLIENT for TCP/IP on OS/2 2.0 and 2.1
Version 2.00 Component ID 562208600
Current CSD level: UN52842
Prior CSD level: UN00000� �

Figure 23. System Maintenance Level f rom Test Installation

2.6.5 Installing from a Code Server
If you have the TCP/IP Version 2.0 for OS/2 base kit, you can install these kits
remotely, from another workstation.

These kits comply with IBM′s Configuration, Installation, and Distribution (CID)
architecture, which provides for unattended, remote installation of programs and
applications from code servers to client workstations.

For information about how to install these kits from a code server to a client
workstation, see TCP/IP Version 2.0 for OS/2: Installation and Administration.

2.6.5.1 Setting Environment Variables
After installation, these environment variables should be set:

set XFILES=d:\tcpip\x11
set XFILESEARCHPATH=d:\tcpip\x11
set XAPPLRESDIR=d:\tcpip\x11
set XKEYSYMDB=d:\tcpip\x11\XKeysymD
set XENVIRONMENT=d:\tcpip\etc\xdefault
set XUSERFILESEARCHPATH=d:\tcpip\x11\app-def\%n

Chapter 2. Installation 49

set XNLSPATH=d:\tcpip\x11\nls
set HOME=d:\tcpip\etc

You can change them in your CONFIG.SYS file, or you can change them with the
OS/2 set command, from the command prompt, in each window session.

2.7 DOS
We installed two versions of the HCL-eXceed software. One for use in
conjunction with Microsoft Windows Version 3.1 and the other for DOS.

HCL-eXceed/W Version 3.3.3 for Windows

HCL-eXceed/DOS Version 3.3 for DOS

The prerequisite software is IBM TCP/IP Version 2.0 or 2.1 for DOS (Program
Number 5621-219) with the latest CSD or TCP/IP Version 2.1.1.

Note: HCL-eXceed release 3.2 does not support IBM TCP/IP Version 2.1 for
DOS. You have to use HCL-eXceed V3.3 or higher.

2.7.1 Installation and Basic Configuration for HCL-eXceed/DOS
 1. Our installation took 12.5MB (including 8.1MB for all font files). Make sure

that you have enough free storage and that TCP/IP is not started with
TCPSTART before.

 2. Insert diskette 1 of 5 and proceed with the following commands:

a:> install

 3. On the first screen you will be asked for the installation directory. We
changed it to C:\XDOS.

 4. Our selection on the next screen was P because it was the first t ime that we
installed HCL-eXceed/DOS.

 5. The next screen shows you the TCP/IP interfaces that are supported by
HCL-eXceed/DOS. Choose J for TCP/IP Version 2.1.

 6. On the next screen you can select your display. We have chosen all to use
an automatic selection for the physical installed Display.

 7. Select all possible fonts on the next screen

 8. The next screen is the validation screen for your selection. Press Enter to
continue, Esc to change, or Ctrl-C to quit.

Follow the instructions displayed on your screen for diskettes 2, 3, 4 and 5.

 9. The installation asks you to update the AUTOEXEC.BAT file. There are two
entries that are added if you press Enter:

set EXCEEDP=C:\XDOS
path=%path%;C:\XDOS

You are also prompted to confirm the system drive (usually C:\)

10. When you customize later, the EXCEEDP variable must be set so that the
xconfigp program works correctly.

50 X Window System Guide

11. The next step is the basic configuration of HCL-eXceed/DOS software. When
the Installation complete message appears on your screen, you can
configure your system right away by pressing Y. Otherwise you can
terminate installation. If you configure now you are using a guided tour
through the configuration utility.

If you start the configuration utility later you can choose between the normal
configuration and the guided tour. The guided tour provides additional
panels which describes the next steps. For the normal configuration type at
your command line:

xconfigp

and press Enter. For the guided configuration type at your command line:

xconfigp -install

and press Enter.

12. In the following steps we added entries to enable us to connect to an IBM
RISC System/6000 X client. The configuration is menu driven, and for each
field the configuration program delivers a detailed help text. We made the
following changes to the default values:

Input Settings Menu

Take the default values

Communication Settings Menu

Startup mode TELNET
Hosts file c:\tcp211\etc\hosts
Connect host rs60007
Userid root
Backspace EC
Transport IBM TCP/IP for DOS

Note: We decided to connect to an IBM RISC System/6000 with the TELNET
command:

Hosts file refers to the IBM TCP/IP hosts file.

EC defines the backspace key on the AIX Telnet Server.

Note:

If you define your local host in the hosts file, the nickname used in the
hosts local file and the hostname defined in the configuration utility in
TCP/IP for DOS Version 2.1.1 (which sets the HOSTNAME variable via
the CONFIG.SYS file), must be identical! If you don′ t do this, eXceedp
won ′ t start.

Video and Color Settings

Foreground hotpink
Background white
Server Class PseudoColor

Chapter 2. Installation 51

You can use every color defined in the RGB database. More information
about the RGB database can be found in 4.3.2.1, “Customizing Colors” on
page 153.

General settings

hwm load
htelnet load
control panel load

Note: To enable hwm, htelnet and the control panel to be started on request
later.

13. After completing the configuration choose the options EXIT and SAVE on the
panel.

14. Reboot your system.

15. You can start the HCL-eXceed/DOS X Window server with the command:

EXCEEDP

16. A telnet session to the AIX Server should be started. When the telnet
session is established you can submit a command, which starts an X client
application on the DOS host. We used the following commands to display a
clock on the DOS host:

� �
rs60007#> DISPLAY=DOS20:0
rs60007#> export DISPLAY
rs60007#> xclock &

� �
Figure 24. Telnet Session to AIX to Start X Client Application

To stop the X server press Esc and then Esc again. To restart, type exceedp.
To control the HCL-eXceed/DOS X Window server you can use the
commands, listed in the following table. Each command is initiated with the
following:

<Left Alt> + <Esc>

Table 7 (Page 1 of 2). HCL-eXceed Server Commands

Keystroke Operation

< L e f t A l t > + < E s c > ,
fo l lowed by <Esc>

Terminate the server

< L e f t A l t > + < E s c > ,
followed by C

Access Control Panel

< L e f t A l t > + < E s c > ,
followed by D

Switch to DOS

< L e f t A l t > + < E s c > ,
fo l lowed by <Enter>

Execute the command in the DOS command field of
XCONFIGP′s General settings menu

< L e f t A l t > + < E s c > ,
followed by I

Write a socket summary to the Log file

52 X Window System Guide

Table 7 (Page 2 of 2). HCL-eXceed Server Commands

Keystroke Operation

< L e f t A l t > + < E s c > ,
followed by K

Kill all connections and reset the server

< L e f t A l t > + < E s c > ,
followed by L

Start the hwm window manager if it is enabled, or
restart hwm

< L e f t A l t > + < E s c > ,
followed by Q

Display a help screen listing commands you can enter
from the server status line

< L e f t A l t > + < E s c > ,
followed by S

Load or reload the htelnet client if it is enabled

< L e f t A l t > + < E s c > ,
followed by T

Enable tracing

< L e f t A l t > + < E s c > ,
followed by U

Disable tracing

< L e f t A l t > + < E s c > ,
followed by Z

Kill all write-blocked clients

< L e f t A l t > + < E s c > ,
followed by A

Enable/Disable Access database modifications

< L e f t A l t > + < E s c > ,
followed by H

Reload host Access database

< L e f t A l t > + < E s c > ,
followed by R

Reload RGB database

< L e f t A l t > + < E s c > ,
followed by F

Reload Font database

< L e f t A l t > + < E s c > ,
fo l lowed by <Spacebar>

Abort the status line and return to the server without
entering a command

2.7.2 Installation and Basic Configuration for HCL-eXceed/W
Make sure that you have 12.5MB disk space available for the installation of
HCL-eXceed/W (including 7.7MB for the fonts).

 1. Windows must be started before you can install HCL-eXceed/W. Insert
diskette 1 of 7. Select run from the Windows Program Manager′s File menu.
Enter a:setup.

 2. On the first window we selected the following:

 First Window

Setup: Personal
Install: Complete

 3. On the next window we defined the path in which to install eXceed/W:

 Installation Directory

Home Directory: C:\XWIN

 4. On the next window we defined the user directory:

 User directory

User Directory: C:\XWIN\USER

 5. On the next window we defined the transport interface:

Chapter 2. Installation 53

Transport Interface

Select: Window Sockets API

Note: Do not select IBM TCP/IP V2.1 !

 6. On the next window we selected the fonts:

 Installing fonts

We selected all fonts

 7. The next dialog box covers the local X client support:

Installing local X clients

We selected: Local X Client Support, Demos

Local X client support allows you to run local X clients. Local X clients are X
clients that have been built or rebuilt to run on a PC with Microsoft Windows,
rather than on a UNIX host. A number of sample local X clients have been
included with eXceed/W. The X Software Development Kit (XDK) allows you
to create your own local X clients. Requirements :

In order to develop local X clients on your PC using the X Software
Development Kit, you must have the following:

• Microsoft Windows Version 3.0 or higher, running in Standard or 386
Enhanced mode. Note, however, that Windows V3.1 is the prerequisite
for TCP/IP Version 2.1.

• The Microsoft Windows Software Development Kit.

• The Microsoft C Compiler (Version 6.0AX or 7.0 is recommended.

• The eXceed/W X server.

• Local X support and the X Software Development kit.

 8. On the next window all selected items appear. The window should look like
Figure 25 on page 55.

54 X Window System Guide

Figure 25. Selected Installation Configuration

 9. The installation reads diskettes 1 to 7. You will be prompted to change the
diskettes when required. The installation asks you to modify the
AUTOEXEC.BAT. It appends the line:

path=c:\xwin\ibm;%path%

If for any reason (for example, reinstallation) you are not prompted for the
AUTOEXEC.BAT you should add this statement into your AUTOEXEC.BAT file
or append the C:\install\ path to your existing path statement.

Then let the installation create a group for your X server and local X clients.

10. Reboot your system and restart Windows.

11. Now you are able to start the basic configuration for the X server. If you
want to have more information, click on the Xconfig/W icon and then restore
the Transports and Read Me icons.

12. Now you can start with the configuration. The eXceed/W Window is shown in
Figure 26 on page 56.

Chapter 2. Installation 55

Figure 26. HCL-eXceed/W Window

Restore the Xconfig/W icon and start the configuration by double-clicking on
the configuration icon. The configuration window is shown in Figure 27.

Figure 27. HCL-eXceed/W Configuration Window

Click on the appropriate items to define the following settings:

 Input

Take the default values for US English Keyboards

For more information on keyboard remapping see 4.3.1.3, “Remapping the
Keyboard” on page 152.

 Communication

Hosts: c:\tcpdos\etc\hosts:
Startup: passive

 Video

Take the default values (other)

 General

Take the default values

56 X Window System Guide

 Protocol

Take the default values:
Enable: allow old X11 bugs
Disable: all other selections

 Color

Take the default values

For more information on customizing Colors see 4.3.1.1, “Customizing
Colors” on page 149.

 Access

Take the default values

For more information on access control see 4.3.1.4, “Controlling X Client
Access” on page 153.

 Font

Take the default values

For more information on fonts see 4.3.1.2, “X Fonts” on page 150.

13. Move the cursor to SETTINGS in the Xconfig/W window and select Save.

14. Now you can start the X server by double-clicking on the eXceed/W icon. To
initiate a session with the IBM RISC System/6000 restore the Xstart icon and
fill in the appropriate fields. In our example we used the settings shown in
the following figure:

Figure 28. Xstart

Chapter 2. Installation 57

Notes:

 1. You can save that window (title bar: File). Then click on Run and you should
get an aixterm window on your display. The password will be stored in
encrypted form.

 2. With Windows you cannot start the Motif Window Manager, because the
Microsoft Window Manager controls both the Windows applications and the X
clients.

You need not initiate the first X client application with the Xstart icon. You can
use telnet from the DOS command line or start the X client application directly
on every TCP/IP host with the appropriate software and settings.

To stop the eXceed/W server restore the HCL-eXceed/W icon and select Close.
This will also close all clients that are displayed on your screen.

58 X Window System Guide

Chapter 3. X Client Application Considerations

 Warning

It is outside the scope of this document to serve as an X Window System
application programming guide. However, this chapter does provide you with
information that will allow you to understand the application environment on
each of the IBM X client platforms.

An X client application that uses the Xlib API must be written using C as a
programming language. However, the programmer does have a number of
choices when deciding how to write an X client application:

 1. To use the base Xlib functions directly through the native Xlib interface.

 2. To use the X toolkit (Xt) intrinsics which overlay and call the Xlib functions.

 3. To use a widget set such as the Athena widget set or the OSF/Motif widget
set which makes use of the Xt intrinsics.

Each of the IBM X client products for the MVS, VM and AIX platforms include
sample programs that provide the programmer with examples for each of the
above cases. The following sections describe how to take your application
source and produce an executable load module for each client platform.

3.1 Under MVS
IBM provides the C source for three sample programs with the X Window System
for MVS:

XSAMP1X uses only Xlib functions.

XSAMP2X uses the Athena widget set functions.

XSAMP3X uses the OSF/Motif widget set functions.

As an application programmer who will write an X client application you will
need to understand how to call the functions in either the Xlib, Xt, or widget set
libraries. These samples provide examples of how to code these function calls.

When these samples are compiled and link-edited they perform the same
function as described for the XSAMP1, XSAMP2, and XSAMP3 in 2.2.1,
“Installation Verification for the MVS X Window System API” on page 26.

Also included with the MVS X Window System are a number of the standard MIT
X client applications. These provide you with more complex examples of how X
client applications can be coded to perform certain functions. There are
examples of programs that use Xlib natively or the Athena widget set. For a full
list of the supplied MIT X client applications please refer to TCP/IP Version 2
Release 2.1 for MVS: Programmer′s Reference.

 Copyright IBM Corp. 1992, 1994 59

3.1.1 Compiling and Link-Editing under MVS
Once you have your X client C program source ready you must compile and
link-edit it to produce an executable load module. There is nothing special about
using the IBM C/370 compiler and linkage editor to produce an executable X
client load module other than ensuring that you access the correct libraries and
have the appropriate include statements to resolve all external references during
the link-edit stage.

The libraries that you must point to in your SYSLIB DD statement depend upon
which X Window functions your application is using. The options are:

• Only Xlib functions
• Xt intrinsics
• Athena widget set functions
• OSF/Motif widget set functions

The libraries are:

• tcpip.SEAZAX11L (Xlib, Xmu and Xext routines)
• tcpip.SEZAOLDX (X Release 10 compatibility routines)
• tcpip.SEZAXTLB (Xt Intrinsics)
• tcpip.SEZAXAWLB (Athena widget set)
• tcpip.SEZAXMLB (OSF/Motif-based widget set)
• tcpip.SEZACMAC (C header files)
• tcpip.SEZACMTX (Sockets routines)
• tcpip.SEZARNT1 (Object data for reentrant programs)

3.1.1.1 Using Only Xlib Functions under MVS
Use the following steps as a guide to produce an executable module for
XSAMP1X which uses only Xlib functions:

 1. You wil l find the source for XSAMP1X in tcpip.SEZAINST where tcpip is the
high-level data set name qualifier under which the TCP/IP libraries are
installed.

 2. Allocate three data sets as follows:

• userid.XCLIENT.C for the source code. This should be a fixed block,
partitioned data set with a record length of 80 bytes.

• userid.XCLIENT.OBJ for the compiled object code. This should also be a
fixed block, partitioned data set with a record length of 80 bytes.

• userid.XCLIENT.LOAD for the executable load modules. This should be a
variable length partitioned data set.

The above data set names are optional but will be assumed for the following
discussion. The high-level qualifier userid is the user ID of the TSO user who
will be compiling, link-editing and running the X client applications.

 3. Copy XSAMP1 into userid.XCLIENT.C.

 4. Code JCL to call and substitute statements for the IBM cataloged procedure
EDCC, which is supplied with the C/370 compiler program, and invokes the C
compiler. You can find a copy of this procedure in c370.SEDCPROC where
c370 is the high-level data set name qualifier under which the C/370 libraries
are installed. Refer to Appendix A, “MVS C/370 Catalogued Procedures” on
page 163 for a copy of the EDCC cataloged procedure.

60 X Window System Guide

An example of the JCL that you would use to call and substitute statements
for EDCC to compile XSAMP1 is in Figure 29 on page 61.

//PARAVANY JOB O-111111,MSGCLASS=O,MSGLEVEL=(1,1),REGION=4M,CLASS=I
//***
//*
//EDCC1 EXEC EDCC,INFILE=′ XSAMP1′ , CPARM=′ DEF(IBMCPP)′
//*
//***
//STEPLIB DD DSN=C370.V2R1M0.SEDCLINK,DISP=SHR
// DD DSN=PLI.V2R3M0.SIBMLINK,DISP=SHR
// DD DSN=C370.V2R1M0.SEDCCOMP,DISP=SHR
//SYSIN DD DSN=PARAVAN.XCLIENT.C(&INFILE),DISP=SHR
//SYSLIB DD DSN=C370.V2R1M0.SEDCHDRS,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZACMAC,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZAX11L,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZACMTX,DISP=SHR
//SYSLIN DD DSN=PARAVAN.XCLIENT.OBJ(&INFILE),DISP=SHR
//*

Figure 29. Sample JCL to Compile XSAMP1

The key points to note about the JCL in Figure 29 are:

a. Set INFILE to equal the name of your application source file.
b. Set CPARM= ′DEF(IBMCPP)′ for the C compiler options.

 c. The source code userid.XCLIENT.C(XSAMP1) is referenced by the SYSIN
DD statement.

d. The compiler output, which is the object module and will be called
XSAMP1, is placed in the data set pointed to by the SYSLIN DD
statement, userid.XCLIENT.OBJ.

e. The SYSLIB DD statement must point to c370.SEDCHDRS, which is the
library for C headers, tcpip.SEZACMAC and SEZACMTX, which contain X
client macros and C headers and tcpip.SEZAX11L, which contains the
Xlib routines.

 5. Submit the JCL and ensure that the job runs with a return code of 0. You
will then find an object module XSAMP1 in the data set userid.XCLIENT.OBJ.

 6. Code JCL to call and substitute statements for the IBM cataloged procedure
EDCL, which is supplied with the C/370 Compiler program and invokes the
linkage editor. You can find a copy of this procedure in c370.SEDCPROC.
Refer to Appendix A, “MVS C/370 Catalogued Procedures” on page 163 for
a copy of the EDCL cataloged procedure.

An example of the JCL that you would use to call and substitute statements
for EDCL to link-edit XSAMP1 is in Figure 30 on page 62.

Chapter 3. X Client Application Considerations 61

//PARAVANL JOB O-111111,MSGCLASS=O,MSGLEVEL=(1,1),REGION=4M,CLASS=I
//***
//*
//EDCL1 EXEC EDCL,INFILE=′ XSAMP1′
//***
//SYSLIB DD DSN=C370.V2R1M0.SEDCBASE,DISP=SHR
// DD DSN=PLI.V2R3M0.SIBMBASE,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZAX11L,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZACMTX,DISP=SHR
//SYSLIN DD DSN=PARAVAN.XCLIENT.OBJ(&INFILE),DISP=SHR
// DD *
INCLUDE SYSLIB(XMACROS)
INCLUDE SYSLIB(XLIBINT)
INCLUDE SYSLIB(XRM)

/*
//SYSLMOD DD DSN=PARAVAN.XCLIENT.LOAD(&INFILE),DISP=(MOD,PASS)
//*

Figure 30. Sample JCL to Link-Edit XSAMP1

The key points to note about the JCL in Figure 30 are:

a. Since XSAMP1X only uses X11lib functions, the SYSLIB DD statement
must point to the following data sets:

c370.SEDCBASE the C/370 library on your system

pli.SIBMBASE the PL/1 common library on your system

tcpip.SEZAX11L the X11R4 library

tcpip.SEZACMTX the common TCP/IP text library

b. Not all entry points are defined as external references in tcpip.SEZAX11L
so you must have the INCLUDE statements under your SYSLIN DD
statement as illustrated in Figure 30.

 7. Submit the JCL and ensure that the job runs with a return code of 0. You
will then find a load module XSAMP1 that has been marked executable in the
data set userid.XCLIENT.LOAD.

 8. Ensure that your client host is authorized at the X server and that you have
identified the target X server display. Refer to 2.2.1, “Installation Verification
for the MVS X Window System API” on page 26 for further details.

 9. Run XSAMP1 by typing the following command at the TSO command prompt:

CALL ′ userid.XCLIENT.LOAD(XSAMP1)′

The window that you will see opened at the X server is illustrated in Figure 8
on page 27.

3.1.1.2 Using Athena Widget Set Functions under MVS
Use the following steps as a guide to produce an executable module for XSAMP2
which uses the Athena widget set functions:

 1. You wil l find the source for XSAMP2 in tcpip.SEZAINST

 2. Copy XSAMP2 into userid.XCLIENT.C.

62 X Window System Guide

 3. Use the same JCL that was used for XSAMP1 to compile XSAMP2. Simply
code INFILE=XSAMP2. Refer to Figure 29 on page 61 for an example of this
JCL.

 4. Submit the JCL and ensure that the job runs with a return code of 0. You
will then find an object module XSAMP2 in the data set userid.XCLIENT.OBJ.

 5. The JCL required to link-edit XSAMP2 is different from the JCL used to
link-edit XSAMP1 because XSAMP2 uses Athena widget set functions. An
example of the JCL used to link-edit XSAMP2 is illustrated in Figure 31.

//PARAVANL JOB O-111111,MSGCLASS=O,MSGLEVEL=(1,1),REGION=4M,CLASS=I
//***
//*
//EDCL1 EXEC EDCL,INFILE=′ XSAMP2′
//***
//SYSLIB DD DSN=C370.V2R1M0.SEDCBASE,DISP=SHR
// DD DSN=PLI.V2R3M0.SIBMBASE,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZAXTLB,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZAX11L,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZACMTX,DISP=SHR
//SYSLIN DD DSN=PARAVAN.XCLIENT.OBJ(&INFILE),DISP=SHR
// DD *
INCLUDE SYSLIB(XMACROS)
INCLUDE SYSLIB(XLIBINT)
INCLUDE SYSLIB(XRM)
INCLUDE SYSLIB(CALLBACK)
INCLUDE SYSLIB(CONVERT)
INCLUDE SYSLIB(CONVERTE)
INCLUDE SYSLIB(INTRINSI)
INCLUDE SYSLIB(DISPLAY)
INCLUDE SYSLIB(ERROR)
INCLUDE SYSLIB(EVENT)
INCLUDE SYSLIB(NEXTEVEN)
INCLUDE SYSLIB(TMSTATE)
INCLUDE SYSLIB(ASCTEXT)
INCLUDE SYSLIB(ATOMS)
INCLUDE SYSLIB(ATEXT)

/*
//SYSLMOD DD DSN=PARAVAN.XCLIENT.LOAD(&INFILE),DISP=SHR
//*

Figure 31. Sample JCL to Link-Edit XSAMP2

The key points to note about the JCL in Figure 31 are:

a. Since XSAMP2 uses Athena widget set functions, the SYSLIB DD
statement must point to the following data sets:

c370.SEDCBASE the C/370 library on your system

pli.SIBMBASE the PL/1 common library on your system

tcpip.SEZAXAWL the Athena widget set library

tcpip.SEZAXTLB the X Toolkit intrinsics library

tcpip.SEZAX11L the X11R4 library

tcpip.SEZACMTX the common TCP/IP text library

Chapter 3. X Client Application Considerations 63

b. Not all entry points are defined as external references in
tcpip.SEZAXAWL, tcpip.SEZAXTLB, and tcpip.SEZAX11L. You must
therefore have the INCLUDE statements under your SYSLIN DD
statement as illustrated in Figure 31.

 6. Submit the JCL and ensure that the job runs with a return code of 0. You
will then find a load module XSAMP2 that has been marked executable in the
data set userid.XCLIENT.LOAD.

 7. Ensure that your client host is authorized at the X server and that you have
identified the target X server display. Refer to 2.2.1, “Installation Verification
for the MVS X Window System API” on page 26 for further details.

 8. Run XSAMP2 by typing the following command at the TSO command prompt:

CALL ′ userid.XCLIENT.LOAD(XSAMP2)′

The window that you will see opened at the X Server is illustrated in
Figure 9 on page 27.

3.1.1.3 Using OSF/Motif Widget Set Functions under MVS
Use the following steps as a guide to produce an executable module for XSAMP3
which uses the OSF/Motif widget set functions:

 1. Find the source for XSAMP3 in tcpip.SEZAINST.

 2. Copy XSAMP3 into userid.XCLIENT.C.

 3. Use the same JCL that was used for XSAMP1 and XSAMP2 to compile
XSAMP3. Simply code INFILE=XSAMP3. Refer to Figure 29 on page 61 for
an example of this JCL.

 4. Submit the JCL and ensure that the job runs with a return code of 0. You
will then find an object module XSAMP3 in the data set userid.XCLIENT.OBJ.

 5. The JCL required to link-edit XSAMP3 is different from the JCL used to
link-edit XSAMP1 and XSAMP2 because XSAMP3 uses the OSF/Motif widget
set functions. An example of the JCL used to link-edit XSAMP3 is illustrated
in Figure 32 on page 65.

64 X Window System Guide

//PARAVANL JOB O-111111,MSGCLASS=O,MSGLEVEL=(1,1),REGION=4M,CLASS=I
//***
//*
//EDCL1 EXEC EDCL,INFILE=′ XSAMP3′
//***
//SYSLIB DD DSN=C370.V2R1M0.SEDCBASE,DISP=SHR
// DD DSN=PLI.V2R3M0.SIBMBASE,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZAXMLB,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZAXTLB,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZAX11L,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZACMTX,DISP=SHR
//SYSLIN DD DSN=PARAVAN.XCLIENT.OBJ(&INFILE),DISP=SHR
// DD *
INCLUDE SYSLIB(XMACROS)
INCLUDE SYSLIB(XLIBINT)
INCLUDE SYSLIB(XRM)
INCLUDE SYSLIB(CALLBACK)
INCLUDE SYSLIB(CONVERT)
INCLUDE SYSLIB(CONVERTE)
INCLUDE SYSLIB(INTRINSI)
INCLUDE SYSLIB(DISPLAY)
INCLUDE SYSLIB(ERROR)
INCLUDE SYSLIB(EVENT)
INCLUDE SYSLIB(NEXTEVEN)
INCLUDE SYSLIB(TMSTATE)
INCLUDE SYSLIB(ATOMS)
INCLUDE SYSLIB(CUTPASTE)
INCLUDE SYSLIB(FILESB)
INCLUDE SYSLIB(GEOUTILS)
INCLUDE SYSLIB(LIST)
INCLUDE SYSLIB(MANAGER)
INCLUDE SYSLIB(PRIMITIV)
INCLUDE SYSLIB(RESIND)
INCLUDE SYSLIB(ROWCOLUM)
INCLUDE SYSLIB(MSELECTI)
INCLUDE SYSLIB(TEXT)
INCLUDE SYSLIB(TEXTF)
INCLUDE SYSLIB(TRAVERSA)
INCLUDE SYSLIB(VISUAL)
INCLUDE SYSLIB(XMSTRING)

/*
//SYSLMOD DD DSN=PARAVAN.XCLIENT.LOAD(&INFILE),DISP=(MOD,PASS)
//*

Figure 32. Sample JCL to Link-Edit XSAMP3

The key points to note about the JCL in Figure 32 are:

a. Since XSAMP3 uses OSF/Motif functions, the SYSLIB DD statement must
point to the following data sets:

c370.SEDCBASE the C/370 library on your system

pli.SIBMBASE the PL/1 common library on your system

tcpip.SEZAXMLB the OSF/Motif widget set library

tcpip.SEZAXTLB the X Toolkit intrinsics library

tcpip.SEZAX11L the X11R4 library

Chapter 3. X Client Application Considerations 65

tcpip.SEZACMTX the common TCP/IP text library

b. Not all entry points are defined as external references in
tcpip.SEZAXMLB, tcpip.SEZAXTLB, and tcpip.SEZAX11L. You must
therefore have the INCLUDE statements under your SYSLIN DD
statement as illustrated in Figure 32 on page 65.

 6. Submit the JCL and ensure that the job runs with a return code of 0. You
will then find a load module XSAMP3X that has been marked executable in
the data set userid.XCLIENT.LOAD.

 7. Ensure that your client host is authorized at the X server and that you have
identified the target X server display. Refer to 2.2.1, “Installation Verification
for the MVS X Window System API” on page 26 for further details.

 8. Run XSAMP3 by typing the following command at the TSO command prompt:

CALL ′ userid.XCLIENT.LOAD(XSAMP3)′

The window that you will see opened at the X server is illustrated in
Figure 10 on page 27.

3.1.1.4 Standard MIT X Client Applications under MVS
A number of the standard MIT X client applications are provided with the X
Window System under MVS. Information on how to compile and link-edit these
applications can be found in the member tcpip.INSTALL(I5735HAL). You can also
find help files on operating each of the MIT X client applications in
tcpip.INSTALL.

We compiled and tested three of these applications, all of which use the Athena
widget set:

• XLOGO
• XCLOCK
• XCALC

The steps described here refer to compiling and link-editing these three
applications. Although these steps are very similar to the steps described for
compiling and link-editing XSAMP2 in 3.1.1.2, “Using Athena Widget Set
Functions under MVS” on page 62, they are included for completeness.

 1. You wil l find the source for XLOGO, XCLOCK and XCALC in in
tcpip.SEZAINST.

 2. It is assumed that you have allocated three data sets as follows:

• userid.XCLIENT.C for the source code. This should be a fixed block,
partitioned data set with a record length of 80 bytes.

• userid.XCLIENT.OBJ for the compiled object code. This should also be a
fixed block, partitioned data set with a record length of 80 bytes.

• userid.XCLIENT.LOAD for the executable load modules. This should be a
variable length partitioned data set.

The above data set names are optional but will be assumed for the following
discussion.

 3. Copy XLOGO, XCLOCK and XCALC into userid.XCLIENT.C.

In order to produce a load module for XCALC you will need to compile two
additional modules and link-edit them with XCALC. These are the modules

66 X Window System Guide

ACTIONS and MATH. Copy these from tcpip.SEZALINK into
userid.XCLIENT.C.

 4. Use the JCL as shown in Figure 29 on page 61 to compile XLOGO, XCLOCK,
XCALC, ACTIONS and MATH. The only change you need to make is to
specify the source file for the INFILE parameter. Ensure that each job runs
with a return code of 0. You will then find the object modules XLOGO,
XCLOCK, XCALC, ACTIONS and MATH in the data set userid.XCLIENT.OBJ.

 5. Use the JCL as shown in Figure 30 on page 62 to link-edit XLOGO and
XCLOCK. The only change you need to make is to specify the source file for
the INFILE parameter.

The JCL must be modified to link-edit XCALC because this module needs to
be link-edited with ACTIONS and MATH. You need to point these to object
modules in the SYSLIN DD statement. This JCL is shown in Figure 33.

Ensure each job runs with a return code of 0. You will then find the load
modules XLOGO, XCLOCK, and XCALC in the data set userid.XCLIENT.LOAD.

//PARAVANL JOB O-111111,MSGCLASS=O,MSGLEVEL=(1,1),REGION=4M,CLASS=I
//***
//*
//EDCL1 EXEC EDCL,INFILE=′ XCALC′
//***
//SYSLIB DD DSN=C370.V2R1M0.SEDCBASE,DISP=SHR
// DD DSN=PLI.V2R3M0.SIBMBASE,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZAXAWL,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZAXTLB,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZAX11L,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZACMTX,DISP=SHR
//SYSLIN DD DSN=PARAVAN.XCLIENT.OBJ(&INFILE),DISP=SHR
// DD DSN=PARAVAN.XCLIENT.OBJ(ACTIONS),DISP=SHR
// DD DSN=PARAVAN.XCLIENT.OBJ(MATH),DISP=SHR
// DD *
INCLUDE SYSLIB(XMACROS)
INCLUDE SYSLIB(XLIBINT)
INCLUDE SYSLIB(XRM)
INCLUDE SYSLIB(CALLBACK)
INCLUDE SYSLIB(CONVERT)
INCLUDE SYSLIB(CONVERTE)
INCLUDE SYSLIB(INTRINSI)
INCLUDE SYSLIB(DISPLAY)
INCLUDE SYSLIB(ERROR)
INCLUDE SYSLIB(EVENT)
INCLUDE SYSLIB(NEXTEVEN)
INCLUDE SYSLIB(TMSTATE)
INCLUDE SYSLIB(ASCTEXT)
INCLUDE SYSLIB(ATOMS)
INCLUDE SYSLIB(ATEXT)

/*
//SYSLMOD DD DSN=PARAVAN.XCLIENT.LOAD(&INFILE),DISP=SHR
//*

Figure 33. Sample JCL to Link-Edit XCALC

 6. Ensure that your client host is authorized at the X server and that you have
identified the target X server display. Refer to 2.2.1, “Installation Verification
for the MVS X Window System API” on page 26 for further details.

Chapter 3. X Client Application Considerations 67

 7. Run XLOGO by typing the following command at the TSO command prompt:

CALL ′ userid.XCLIENT.LOAD(XLOGO)′

The window that you will see opened at the X server is illustrated in
Figure 34.

Figure 34. Display at an OS/2 X Server for MIT XLOGO X Client Program

 8. You can end XLOGO by closing the window at the X server.

 9. Run XCLOCK by typing the following command at the TSO command prompt:

CALL ′ userid.XCLIENT.LOAD(XCLOCK)′

The window that you will see opened at the X server is illustrated in
Figure 35. Hopefully the clock will display your local MVS system time!

Figure 35. Display at an OS/2 X Server for MIT XCLOCK X Client Program

10. You can end XCLOCK by closing the window at the X server.

11. Before running XCALC you need to set up a file that specifies values for the
application resources. This is done using an application resource file.

IBM provides an application resource file with XCALC that will allow you to
run the program. This file is tcpip.INSTALL(XXCALC). Refer to Appendix B,
“Supplied Application Resource File Definitions for XCALC” on page 167 for
a copy of the contents of this file. Perform the following tasks to use this as
the application resource file.

a. Allocate a data set called userid.X.DEFAULTS which should be a
sequential, fixed block data set with a record length of 80 bytes.

b. Copy tcpip.INSTALL(XXCALC) into userid.X.DEFAULTS.

12. Run XCALC by typing the following command at the TSO command prompt:

68 X Window System Guide

CALL ′ userid.XCLIENT.LOAD(XCALC)′

The window that you will see opened at the X server is illustrated in
Figure 36.

Figure 36. Display at an OS/2 X Server for MIT XCALC X Client Program

13. You can end XCALC by closing the window at the X server.

3.1.2 MVS Application Resource File
Once you have an executable load module for your X client application, it is
possible to change certain characteristics of the application without having to go
back and modify, re-compile and link-edit the source code. This is done through
an application resource file.

Resources are defined within an application and set to particular values to
specify the characteristics of the application when displayed at an X server.
These characteristics can include application window size, position on the
screen, color, fonts and other functional details.

An application resource file allows you to change these application
characteristics at run time. Within this file it is possible to specify values for
resources that will override the values that are coded within the application.

Under MVS the application resource file is in the data set userid.X.DEFAULTS.
The following is an example that you can use as a guide to building an
application resource file under MVS.

3.1.2.1 Building an Application Resource File Under MVS
As discussed in 3.1.1.4, “Standard MIT X Client Applications under MVS” on
page 66 we compiled and link-edited some MIT X client applications that are
supplied with the X Window System for MVS. Both XLOGO and XCLOCK can be
run without an application resource file. When you execute either XLOGO or
XCLOCK under TSO and direct the output to an X server display each application
takes certain defaults for its resources.

XCALC is a little different in that it is an example of an X client application that
requires an application resource file to provide resource values to operate. This
is because the resources are not specified within the program itself. However,
the principle is exactly the same.

Chapter 3. X Client Application Considerations 69

We performed the following steps to build an application resource file to override
the default values for resources and change the characteristics of XLOGO when
displayed at the X server.

 1. When building an application resource file, the first thing you need to do is to
understand the application resources that are available for modification.
Normally you would refer to the documentation for a program, or look at the
program source code.

If you look in the member tcpip.SEZAINST(HLPXLOGO) you will find a
number of application resources that can be modified for XLOGO. These are
described in Table 8.

 2. Ensure that your client host is authorized at the X server and that you have
identified the target X server display. Refer to 2.2.1, “Installation Verification
for the MVS X Window System API” on page 26 for further details.

 3. Run XLOGO by typing the following command at the TSO command prompt:

CALL ′ userid.XCLIENT.LOAD(XLOGO)′

The window that you will see opened at the X server is illustrated in
Figure 34 on page 68. Notice the default dimensions and colors used to
draw the X.

 4. Close down the XLOGO window at the X server to end the program.

 5. Allocate a data set called userid.X.DEFAULTS which should be a sequential,
fixed block data set with a record length of 80 bytes. Edit this file to change
the values of some of the application resources for XLOGO. An example of
an application resource file is illustrated in Figure 37.

If you already have an existing userid.X.DEFAULTS file for another X client
application, then simply append the lines for XLOGO to the existing
definitions.

Table 8. Application Resources for XLOGO

Resource Description

Width This specifies the width of the XLOGO window in pixels. The
application default is 100 pixels.

Height This specifies the height of the XLOGO window in pixels. The
application default is 100 pixels.

Foreground This specifies the color of the X in the XLOGO. The application
default is black.

Background This specifies the background color. The application default is
white.

XLogo*width: 300
XLogo*height: 300
XLogo*foreground: blue
XLogo*background: red

Figure 37. Example of the Contents of the Application Resource File for XLOGO

70 X Window System Guide

In this example we have set the width and the height of the XLOGO window
to 300 pixels. We have also set the color of the X to blue and the
background color to red.

Note: The application resource file is case sensitive. You must type the
resource names exactly as they are specified for the application.

 6. Run XLOGO again.

 7. Notice the modified characteristics of XLOGO window.

3.1.3 Using GDDM Applications under MVS
As with user-written applications, it is possible to modify the runtime
characteristics for GDDM applications by specifying resource values in the
application resource file userid.X.DEFAULTS. In addition, it is possible to specify
a keyboard map that allows you to use an APL2 keyboard at the X server.

An example of a GDDM application that is commonly used under TSO is
ADMCHART. We tested ADMCHART with the X Window System GDDM interface.

After starting the MVS X Window System GDDM interface as described in 2.2.2.2,
“Installation Verification” on page 29 and identifying an OS/2 X server as the
target display, we started ADMCHART from the TSO command line. ADMCHART
was able to display its panels at the OS/2 X server. An example of the
ADMCHART home panel is illustrated in Figure 38.

Figure 38. An MVS X Window System GDDM Interface Window for ADMCHART

The ADMCHART panel shown in Figure 38 is partly obscured or clipped. This
window has been opened at an OS/2 X server that had an 8513 screen. The
maximum window size possible on this screen is not big enough to
accommodate the minimum GDDM graphics display area specified by the MVS X

Chapter 3. X Client Application Considerations 71

Window System GDDM interface. Please refer to 3.1.3.1, “Application Resource
File for GDDM under MVS” on page 72 for more information.

In order to interact with ADMCHART using the X server keyboard you will need
to alter the keyboard mapping for the Enter key. We discovered that the default
keyboard mappings provided with the X Window Systems for both OS/2 and AIX
had the Enter key set to the keysym name RETURN. You need to remap this
key′s keysym name to EXECUTE. Please refer to 4.2.2.1, “Remapping the
Keyboard under OS/2” on page 128 for a description of how to perform the
remapping with OS/2 and 4.1.5, “Remapping the Keyboard Under AIX/6000” on
page 123 for AIX.

 Note

When using ADMCHART you will notice that after a number of inputs from the
keyboard at the X server (approximately 20), the keyboard locks up. This is
because the TSO screen goes into a holding state. In order to free up the
keyboard you need to go to the TSO session at the 3270 terminal and hit the
Enter key a number of times to allow the screen to scroll through the
messages associated with the X server keystrokes.

This is the case for all X client applications under TSO .

3.1.3.1 Application Resource File for GDDM under MVS
In Chapter 10 of the TCP/IP Version 2 Release 2.1 for MVS: User′s Guide you will
find a description of the application resources for which you can define values to
specify the characteristics for GDDM applications that use the MVS X Window
System GDDM interface. Those resources are listed in Table 9.

Table 9 (Page 1 of 2). Application Resources for GDDM under MVS

Resource Description

CMap Specifies whether to load the default color map or not. This is
specified as N if the color map at the X server is going to be
used as opposed to the default color map that otherwise would
be loaded by the MVS X Window System GDDM interface.

GColornn Specifies the GDDM color that is mapped onto an X Window
System color.

Geometry Specifies the size and location of the initial GDDM window at
the X server. The size of the GDDM graphics display area is
dependent upon the size of the window. There are in fact only
two possible GDDM display area sizes available. If the width
of the window is specified as less that 1000 pixels, then the
size of the GDDM display area will be 720 pixels high by 512
pixels wide; otherwise it will be 1200 pixels wide by 864 pixels
high. If the window is specified as less than 720 pixels by 512
pixels then the GDDM display area will be clipped.

GMCPnn Specifies the GDDM multicolor pattern that is mapped onto an
X Window System color.

HostRast Specifies whether the raster processing is done at the host or
the workstation. The default for this option is N, which means
that the raster processing is done at the workstation. You
should choose Y when the GDDM application involves
multiplane symbol sets or GDDM color mixing.

72 X Window System Guide

You specify these resource options in the application resource file
userid.X.DEFAULTS. You simply edit this file and enter the X Window System
GDDM interface resource options after existing entries that you may have for
other X client applications. Please refer to 3.1.3.1, “Application Resource File for
GDDM under MVS” on page 72 for further details on the application resource file
under MVS.

A sample application resource file for GDDM applications is provided with the X
Window System for MVS. You will find it in the member
tcpip.SEZAINST(XDEFAULT).

An example of application resource file entries for a GDDM application is shown
in Figure 39. Note that the application resource file is case sensitive and so the
variables must be coded exactly as shown.

Table 9 (Page 2 of 2). Application Resources for GDDM under MVS

Resource Description

XCIConn Specifies whether the X Window System GDDM interface
should close the window at the X server when the GDDM
application finishes. The default is Y, which means the window
will close when the GDDM application finishes. N means that
the window will be left open and will continue to display the
last GDDM graphics window displayed at the workstation even
though the application has closed down. The only way to close
this window is at the X server itself.

XSync Specifies that the X Window System GDDM interface send one
request at a time to the X server (operate in a synchronous
mode) when set to Y. The default is that the interface
communicate with the X server asynchronously which is more
common for the X protocol.

ZWL Specifies that the server use the fastest drawing algorithm to
draw lines. The default is N because if this option is used it
may result in lines that are not the width they were intended to
be by the application.

gddmx*CMap: Y
gddmx*GColor1: Purple
gddmx*GColor2: Orange
gddmx*GColor4: White
gddmx*Geometry: 1200x864+50+50
gddmx*HostRast: N
gddmx*XCIConn: Y
gddmx*XSync: N
gddmx*ZWL: N

Figure 39. Example Application Resource File Entries for GDDM Applications

The application resource file entries shown in Figure 39 specify the following:

gddmx*CMap: Y directs the X Window System GDDM interface to load
the default color map.

gddmx*GColor1: Purple specifies that the X Window color purple should be
displayed for the GDDM color blue.

Chapter 3. X Client Application Considerations 73

gddmx*GColor2: Orange specifies that the X Window color orange should be
displayed for the GDDM color red.

gddmx*GColor4: White specifies that the X Window color white should be
displayed for the GDDM color green.

gddmx*Geometry: 1200x900+50+50 specifies a window at the X server that will
be 1200 pixels wide by 900 pixels high and will be 50
pixels in the X direction and 50 pixels in the Y
direction from the top left hand corner of the display.
This means that the GDDM graphics display area will
be 1200 pixels by 864 pixels.

gddmx*HostRast: N directs that raster processing be done at the
workstation.

gddmx*XCIConn: Y specifies that the connection to the X server be
closed when the application is closed.

gddmx*XSync: N specifies that the communication to the X server be
asynchronous.

gddmx*ZWL: N specifies that line widths will be displayed at normal
width.

We set these options in userid.X.DEFAULTS and started up the MVS X Window
System GDDM interface as described in 2.2.2.2, “Installation Verification” on
page 29. We identified an OS/2 X server as the target display and started
ADMCHART from the TSO command line. A window like the one illustrated in
Figure 40 was opened at the OS/2 X server.

Figure 40. Display at an OS/2 X Server for ADMCHART under MVS

74 X Window System Guide

Remember that we set the geometry for this window in the application resource
file as 1200 pixels wide and 900 pixels high. This was far too big for the 8513
screen so PMX, the OS/2 X Window Manager, made the window as large as the
display will permit. However, because we set the window to greater than 1000
pixels wide, the GDDM graphics display area has still been set to 1200 pixels
wide by 864 pixels high.

Even when we set the window geometry at 720 pixels wide and 512 pixels wide,
the GDDM graphics display area is too large for an 8513 screen. An example of
a window with this geometry is illustrated in Figure 38 on page 71.

Under PMX we re-focused the window by clicking on the button at the right of the
window title bar used to maximize the window. The resulting window is
illustrated in Figure 42 on page 76. Notice that the GDDM graphics display area
is now much smaller than the default minimum of 720 pixels wide by 512 pixels
high. On a 8514 display we had good results with the following geometry data:
the whole graphic could be displayed.

gddmx*CMap: Y
gddmx*GColor1: Purple
gddmx*GColor2: Orange
gddmx*GColor4: White
gddmx*Geometry: 750x650+10+10
gddmx*HostRast: N
gddmx*XCIConn: Y
gddmx*XSync: N
gddmx*ZWL: N

Figure 41. Modified Application Resource File Entries for 8514 Display

Chapter 3. X Client Application Considerations 75

Figure 42. Re-focused Display at an OS/2 X Server for ADMCHART

3.1.3.2 APL2 Character Set Keyboard for GDDM under MVS
Unfortunately, GDDM applications that require APL2 characters to be input from
a keyboard are not classic X Window System applications because they are not
truly device independent. These applications are designed to operate with an
IBM 3179-G display and an APL2 keyboard where physical keys correspond to
specific character representations.

The X Window System GDDM interface for MVS provides a mechanism which
allows the keyboard at an X server to be used as an APL2 keyboard. A map is
provided which allows the X Window System GDDM interface to accept
keystrokes from the X server and translate them into valid APL2 data for the X
client application.

When an application is started it initializes the X Window System GDDM
interface, which looks for a data set called userid.GDXALTCS.PSS where userid
is the TSO user ID under which the X client application is started. This data set
provides the default mapping for the primary and alternate character sets
associated with an IBM 3179-G display.

Use the following steps as a guide to setting up this data set:

 1. You can find this mapping in the supplied member
tcpip.SEZAINST(GDXALTCS) where tcpip is the high-level qualifier under
which TCP/IP has been installed under MVS.

 2. Allocate a data set called userid.GDXALTCS.PSS which should be a
sequential fixed block data set with a record length of 80 bytes.

 3. Copy the contents of tcpip.SEZAINST(GDXALTCS) into
userid.GDXALTCS.PSS.

76 X Window System Guide

In an X Window environment, each physical key is associated with a keycode.
The MVS X Window System GDDM interface uses userid.GDXALTCS.PSS to map
keycodes into characters that are then sent to the GDDM application.

Characters are represented by keycodes in one of the following ways:

 1. A single keycode only.

 2. A keycode with a modifier keycode.

The two modifier keys that are used are the Shift and the Alt keys.

Once you have userid.GDXALTCS.PSS in place, you will notice that by pressing
the Backspace key together with the Alt key you will toggle on the APL2
character set. This is indicated by the characters (APL) in the title bar of the
window at the X server as shown in Figure 43. This now means that you are
able to use the APL2 character set at your X server keyboard.

Note: You only need to install userid.GDXALTCS.PSS if you are planning to use
the APL2 character set.

Figure 43. APL2 Character Set Indicator on at the X Server Window Title Bar

The mapping in userid.GDXALTCS.PSS assumes a keyboard at the X server that
is equivalent to the IBM 101-key Enhanced Keyboard. What this actually means
is that it is assumed that the physical key represented by a particular keycode
has the appropriate primary and alternate characters on that key as you would
find on an IBM 3179-G 101-key Enhanced Keyboard. Where this is not the case it
is possible to override the default mapping provided by userid.GDXALTCS.PSS.

If the keyboard at your X server is not set out such that characters correspond to
particular keycodes as expected by the MVS X Window System GDDM interface,
then you can use the following steps as a guide to providing a customized
mapping for your keyboard:

 1. The first thing you need to know is the keycode associated with each
physical key on your keyboard. Provided with the X Window System GDDM
interface is an X client program called KEYCODE. When invoked this
program opens a window at your server which will allow you to determine
the keycode for each key that is pressed. Invoke KEYCODE as follows:

a. Ensure that the X server has authorized the MVS host as an X client and
that the X client target display variable has been set in the data set
userid.XWINDOWS.DISPLAY to identify the X server target display. Refer
to 2.2.1, “Installation Verification for the MVS X Window System API” on
page 26 for more information on the data set
userid.XWINDOWS.DISPLAY.

b. From the TSO command line type:

Chapter 3. X Client Application Considerations 77

KEYCODE

 c. KEYCODE will open a window at your X server. Press any key and
notice the corresponding keycode. Figure 44 shows the KEYCODE
window after the Alt and Backspace keys have been pressed.

Figure 44. X Client KEYCODE Display for the ALT BACKSPACE Key Sequence

The above display shows that the keycode for the Backspace key is
hexadecimal 17 and the Alt key is the modifier.

 2. IBM provides a sample APL2 character set map in
tcpip.SEXAINST(GDXAPLCS). Allocate the data set userid.GDXAPLCS.MAP
which should be a sequential fixed block data set with a record length of 80
bytes.

 3. Copy the contents of tcpip.SEZAINST(GDXAPLCS) into
userid.GDXAPLCS.MAP. When the MVS X Window System GDDM interface
is initialized it looks for userid.GDXAPLCS.MAP, which it will use to override
the default APL2 character set mappings.

 4. Based on the keycodes you obtained from the KEYCODE application you can
edit userid.GDXAPLCS.MAP and change the character codes associated with
each keycode to match your keyboard. A section of the contents of
userid.GDXAPLCS.MAP is illustrated in Figure 45.

 0a 00 f1 08 72 08 da
 0b 00 f2 08 a0 08 fb
 0c 00 f3 00 4c 08 dc
 0d 00 f4 08 8c 08 dd
 0e 00 f5 00 7e 08 cd
 0f 00 f6 08 ae 08 cf
 10 00 f7 00 6e 08 ed
 11 00 f8 08 be 08 fd
 12 00 f9 08 78 08 cb
 13 00 f0 08 71 08 ca
 14 00 4e 00 60 08 db
 15 08 b6 08 b8 08 ee
 19 00 d8 00 6f 08 58
 1a 00 e6 08 b4 08 66
 1b 00 c5 08 b1 08 45
 1c 00 d9 08 b3 08 59
 1d 00 e3 08 80 08 63

Figure 45. Example of the Contents of tcpip.GDXAPLCS.MAP

The column values in the map in Figure 45 have the following meaning:

Column 1 is the hexadecimal keycode for the physical key.

78 X Window System Guide

Column 2 defines whether the character is in the primary or alternate
character set when the key corresponding to the keycode is
pressed alone. 0 means the character is in the primary set while
8 means the alternate character set.

Column 3 is the EBCDIC code for the character in the character set when
the key corresponding to the keycode is pressed alone.

Column 4 defines whether the character is in the primary or alternate
character set when the key corresponding to the keycode and the
Shift key are pressed together. 0 means the character is in the
primary set while 8 means the alternate character set.

Column 5 is the EBCDIC code for the character in the character set when
the key corresponding to the keycode and the Shift key are
pressed together.

Column 6 defines whether the character is in the primary or alternate
character set when the key corresponding to the keycode and the
Alt key are pressed together. 0 means the character is in the
primary set while 8 means the alternate character set.

Column 7 is the EBCDIC code for the character in the character set when
the key corresponding to the keycode and the Alt key are pressed
together.

The primary character set is available when the APL2 character set is
toggled either on or off. The alternate character set is only available when
the APL2 character set is toggled on. Consider the first row in the table as
an example:

0a is the keycode for what is normally the 1 key.

00 means that when this key is pressed alone the character
represented by the code in column 3 (in this case f1) will be sent
to the application.

f1 is the EBCDIC code for the character 1.

08 means that when the APL2 character set is toggled on, then when
this key and the Shift are pressed together the character
represented by the code in column 5 (in this case 72) will be sent
to the application.

72 is the EBCDIC code for the diaeresis character.

08 means that when the APL2 character set is toggled on, then when
this key and the Alt are pressed together the character
represented by the code in column 7 (in this case da) will be sent
to the application.

da is the EBCDIC code for the Down Tack Up Tack character.

For a full list of the character codes and the associated default keycodes
please refer to Appendix B, TCP/IP Version 2 Release 2.1 for MVS: User′s
Guide.

 5. To test the mapping we changed the entry for the keycode for the 1 key. The
default entry in userid.GDXAPLCS.MAP for this keycode is:

 0a 00 f1 08 72 08 da

We altered it to:

 0a 00 f2 08 72 08 da

Chapter 3. X Client Application Considerations 79

This means that whenever this key is pressed, the character 2 will be sent to
the GDDM application.

Note: Remember that this mapping will only happen when the APL2
character set is toggled on. The userid.GDXAPLCS.MAP data set has no
effect when the APL2 character set is off.

3.2 Under VM
IBM provides the C source for three sample programs with the X Window System
for VM. These programs execute exactly the same under VM as they do under
MVS. Refer to 3.1, “Under MVS” on page 59 for further details. You can use
these sample programs to understand how to code function calls for either the
Xlib, Xt or widget set libraries.

In 2.2.1, “Installation Verification for the MVS X Window System API” on page 26
we document the steps required to produce executable modules for the sample
applications under VM.

Also included with the VM X Window System are the same standard MIT X client
applications provided with MVS. These provide more complex examples of how
X client applications can be coded to perform certain functions. For a full list of
the supplied MIT X client applications please refer to TCP/IP Version 2 Release 2
for VM: Programmer′s Reference.

3.2.1 Compiling and Link-Editing Under VM
When compiling and link-editing your X client application under VM you need to
ensure that you access the appropriate libraries to resolve all external
references during the link-edit stage.

The libraries that you must point to using a CMS GLOBAL command depend
upon which X Window functions your application is using. The options are:

• Only Xlib functions
• Xt intrinsics
• Athena widget set functions
• OSF/Motif widget set functions

We compiled and tested two of the MIT applications under VM:

• BITMAP which uses only Xlib functions.

• OCLOCK which uses the Athena widget set functions.

Note that there is an XCLIENT EXEC on the product tape which can be used to
generate all X client application programs.

3.2.1.1 Using Only Xlib Functions Under VM
Use the following steps as a guide to produce an executable module for BITMAP
which uses only Xlib functions:

 1. You need to have access to the following disks:

• TCPMAINT 592 minidisk for TCP/IP client code
• TCPMAINT 5C4 minidisk for the sample programs
• The minidisk that has the C/370 compiler

 2. On the 5C4 minidisk you wil l find the following source files:

80 X Window System Guide

• BITMAP C
• BMDIALOG C

 3. Produce an executable module for BITMAP by doing the following:

a. Set the LOADLIB and TXTLIB search order using the following CMS
commands:

SET LDRTBLS 25
GLOBAL LOADLIB EDCLINK
GLOBAL TXTLIB X11LIB COMMTXT EDCBASE IBMLIB CMSLIB

b. Compile BITMAP C using the following command:

CC BITMAP (DEFINE(IBMCPP)

This creates BITMAP TEXT on your A disk.

 c. Compile BMDIALOG C using the following command:

CC BMDIALOG (DEFINE(IBMCPP)

This creates BMDIALOG TEXT on your A disk.

When you compile both BITMAP and BMDIALOG you will see warning
messages that indicate that external names have been truncated. This is
normal since VM can only support external names of eight characters or
less.

d. Link-edit BITMAP with BMDIALOG using the following command:

CMOD BITMAP BMDIALOG

This creates BITMAP MODULE on your A disk.

 4. Ensure that the X server has authorized the VM host as an X client. For
specific details on how to do this please refer to 4.1.6, “Controlling X Client
Access to AIX/6000” on page 125 for AIX as the X server, 4.2.4, “Controlling
X Client Access to OS/2” on page 132 when OS/2 is the X server, and 4.3.1.4,
“Controlling X Client Access” on page 153 for a DOS X server.

 5. Identify the target X server display using the following CMS command:

GLOBALV SELECT CENV SET DISPLAY <X client display variable>

where <X cl ient display var iable> is the variable that the X client must use
to access the X server. It has the format host:0.0 where host is the Internet
address or host name of the X server and 0.0 represents the target
server.server screen. For example, when using our OS/2 machine as the X
server, since it had the Internet address 9.67.38.89, we typed the command:

GLOBALV SELECT CENV SET DISPLAY 9.67.38.89:0.0

Chapter 3. X Client Application Considerations 81

 6. The BITMAP program allows you to create and edit bitmaps that can be used
by X client application programs to display cursors, icons and titles. Start
BITMAP by typing the following command at the CMS command line:

BITMAP -FN 6x10 TEST

where TEST is the name of the bitmap to be created. The option -FN 6x10
specifies the font. We discovered we had to choose a smaller font than the
default font for BITMAP. When we used the default font to display the
BITMAP window at our OS/2 X server with an 8513 display we got an error
message indicating that the window was not big enough. We were able to
use the default BITMAP font when using a RISC System/6000 with a 6091
Model 19 screen (1280x1024 pixel resolution).

The window displayed at an OS/2 X server by the BITMAP X client
application is illustrated in Figure 46.

Figure 46. Display at an OS/2 X Server for MIT BITMAP X Client Program

You can look at the file BITMAP HLPX11 on the TCPMAINT 5C4 minidisk for
detailed instructions on how to use BITMAP.

3.2.1.2 Using Athena Widget Set Functions under VM
Use the following steps as a guide to produce an executable module for
OCLOCK, which uses the Athena widget set functions:

 1. You need to have access to the following disks:

• TCPMAINT 592 minidisk for TCP/IP client code
• TCPMAINT 5C4 minidisk for the sample programs
• The minidisk that has the C/370 Compiler

 2. On the 5C4 minidisk you wil l find the following source files:

82 X Window System Guide

• OCLOCK C
• NCLOCK C
• TRANSFOR C

 3. Produce an executable module for OCLOCK by doing the following:

a. Set the LOADLIB and TXTLIB search order using the following CMS
commands:

SET LDRTBLS 25
GLOBAL LOADLIB EDCLINK
GLOBAL TXTLIB XAWLIB XTLIB X11LIB COMMTXT EDCBASE IBMLIB CMSLIB

Note that we are now pointing to the Athena widget set library and the X
toolkit intrinsics library.

b. Compile OCLOCK C using the following command:

CC OCLOCK (DEFINE(IBMCPP)

This creates OCLOCK TEXT on your A disk.

 c. Compile NCLOCK C using the following command:

CC NCLOCK (DEFINE(IBMCPP)

This creates NCLOCK TEXT on your A disk.

d. Compile TRANSFOR C using the following command:

CC TRANSFOR (DEFINE(IBMCPP)

This creates TRANSFOR TEXT on your A disk.

When you compile OCLOCK, NCLOCK, and TRANSFOR, you will see
warning messages that indicate that external names have been
truncated. This is normal since VM can only support external names of
eight characters or less.

e. Link-edit OCLOCK with NCLOCK and TRANSFOR using the following
command:

CMOD OCLOCK NCLOCK TRANSFOR

This creates OCLOCK MODULE on your A disk.

 4. Ensure that the X server has authorized the VM host as an X client. For
specific details on how to do this please refer to 4.1.6, “Controlling X Client
Access to AIX/6000” on page 125 for AIX as the X server, 4.2.4, “Controlling
X Client Access to OS/2” on page 132 when OS/2 is the X server, and 4.3.1.4,
“Controlling X Client Access” on page 153 for a DOS X server.

 5. Identify the target X server display using the following CMS command:

GLOBALV SELECT CENV SET DISPLAY <X client display variable>

Chapter 3. X Client Application Considerations 83

where <X cl ient display var iable> is the variable that the X client must use
to access the X server. It has the format host:0.0 where host is the Internet
address or host name of the X server and 0.0 represents the target
server.server screen. For example, when using our OS/2 machine as the X
server, since it had the Internet address 9.67.38.89, we typed the command:

GLOBALV SELECT CENV SET DISPLAY 9.67.38.89:0.0

 6. Run OCLOCK by typing the following command at the CMS command line.

OCLOCK

The OCLOCK provided with VM is quite different from the standard MIT
OCLOCK provided with AIXwindows Environment/6000. When you run the
OCLOCK from VM you will see a window opened at the X server that is
identical to that for the program XCLOCK. This window is illustrated in
Figure 35 on page 68.

The file OCLOCK HLPX11 does not seem to apply to the OCLOCK program
provided with VM. It would, however, apply to the standard MIT OCLOCK
program!

You can end the OCLOCK program by closing down the window at the X
server.

3.2.1.3 Using OSF/Motif Widget Set Functions under VM
Please refer to 2.3.1, “Installation Verification for the VM X Window System API”
on page 31 and the steps used to compile and link-edit XSAMP3 as a guide to
producing an executable module for a program that uses OSF/Motif widget set
functions.

3.2.2 VM Application Resource File
As with MVS, it is possible to use an application resource file for X client
applications on VM. It is used to change the characteristics of an application at
run time by specifying values for resources that will override the values that are
coded within the application. Characteristics include application window size,
position on the screen, color, fonts, and other functional details.

Under VM the application resource file is called X DEFAULTS. The following is
an example that you can use as a guide to building an application resource file
under VM.

3.2.2.1 Building an Application Resource File under VM
In 3.1.2.1, “Building an Application Resource File Under MVS” on page 69 we
describe how to build an application resource file under MVS for the X client
application XLOGO. That example, in terms of the contents of the application
resource file and the effect on the characteristics of XLOGO, would apply equally
well to VM.

As discussed in 3.2.1.1, “Using Only Xlib Functions Under VM” on page 80, we
compiled and link-edited the MIT client application BITMAP that is provided with
the X Window System for VM. In order to provide an example of building an
application resource file under VM, we performed the following steps to build an
application resource file for BITMAP:

84 X Window System Guide

 1. Ensure that you are linked to the following disks:

• TCPMAINT 592 minidisk
• TCPMAINT 5C4 minidisk

 2. When building an application resource file, the first thing you need to do is to
understand the application resources that are available for modification.
Normally you would refer to the documentation for a program, or look at the
program source code.

If you look in the file BITMAP HELPX11 on the TCPMAINT 5C4 minidisk you
will find a list of the application resources that can be modified for BITMAP.
These are described in Table 10.

 3. Set the following CMS global variables by issuing these three commands:

SET LDRTBLS 25
GLOBAL LOADLIB EDCLINK
GLOBAL TXTLIB X11LIB COMMTXT EDCBASE IBMLIB CMSLIB

 4. Ensure that the X server has authorized the VM host as an X client. For
specific details on how to do this please refer to 4.1.6, “Controlling X Client
Access to AIX/6000” on page 125 for AIX as the X server, 4.2.4, “Controlling
X Client Access to OS/2” on page 132 when OS/2 is the X server, and 4.3.1.4,
“Controlling X Client Access” on page 153 for a DOS X server.

 5. Identify the target X server display using the following CMS command:

GLOBALV SELECT CENV SET DISPLAY <X client display variable>

where <X cl ient display var iable> is the variable that the X client must use
to access the X server. It has the format host:0.0 where host is the Internet
address or host name of the X server and 0.0 represents the target
server.server screen. For example, when using our OS/2 machine as the X
server, since it had the Internet address 9.67.38.89, we typed the command:

Table 10. Application Resources for BITMAP

Resource Description

Geometry Determines the size and location of the BITMAP window.

Background Specifies the window′s background color. The default is white.

Foreground Specifies the window′s foreground color. The default is black.

BorderColor Specifies the color of the window′s border. The default is black.

BorderWidth Specifies the width of the window′s border. The default is 2 pixels.

BodyFont Determines the text font that appears in the BITMAP buttons. The
default is
-misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso8859-1 or
fixed for short.

Dashed Specifies whether the BITMAP grid has dashed or solid lines. The
default is on which means a dashed grid.

Highlight Specifies the color for areas that have been highlighted on the grid
for moving, setting, clearing or inverting.

Mouse Specifies the color of the pointer.

Chapter 3. X Client Application Considerations 85

GLOBALV SELECT CENV SET DISPLAY 9.67.38.89:0.0

 6. Run BITMAP by typing the following command at the CMS command prompt:

BITMAP TEST

The window that you will see opened at the X server is illustrated in
Figure 46 on page 82. Notice the default window dimensions and colors.

 7. Close down the BITMAP window at the X server to end the program.

 8. A sample X DEFAULTS file is provided on the TCPMAINT 592 minidisk. You
can either copy this file onto your A disk or edit it directly. Add some entries
to change the resources for BITMAP. An example of some application
resource file entries for BITMAP is illustrated in Figure 47.

bitmap*Foreground: red
bitmap*Background: blue
bitmap*Highlight: green
bitmap*BodyFont: 6x10
bitmap*Geometry: 600x400
bitmap*Dimensions 10x10
bitmap*BorderColor: black
bitmap*BorderWidth: 5
bitmap*Dashed: off
bitmap*Mouse: black

Figure 47. Example of the Contents of the Application Resource File for BITMAP

Note: The application resource file is case sensitive. You must type the
resource names exactly as they are specified for the application.

 9. Run BITMAP again.

10. Notice the modified characteristics of the BITMAP window. The application
resource file shown in Figure 47 produced a BITMAP window at our OS/2 X
server as illustrated in Figure 48 on page 87. Compare this to the BITMAP
window illustrated in Figure 46 on page 82 which, except for the font, used
application resource defaults.

86 X Window System Guide

Figure 48. Display at an OS/2 X Server for Modif ied MIT BITMAP X Client Program

 Note

When using an OS/2 X server to display the BITMAP window with the
application resource file as specified in Figure 47 on page 86 we got the
following message at VM:

bitmap: unable to allocate color cells

The BITMAP window at the OS/2 X server still displayed the default
colors black and white as opposed to the colors set in the application
resource file. We did not get this problem when using the AIX X server
or the HCL-eXceed X server. This problem occurred because PMX was
running in StaticColor only mode and other X servers were in
PseudoColor mode. The solution is to run BITMAP with PMX running in
PseudoColor mode.

3.2.3 Using GDDM Applications under VM
The GDDM shared segment needs to be reinstalled when installing the X
Window System GDDM interface to allow the interface modules to access the
shared segment. This is described in 2.3.2, “Installing the VM X Window System
GDDM Interface” on page 33.

When you install the X Window System GDDM interface you have two choices for
reinstalling the GDDM shared segment:

 1. Reinstall the existing named GDDM shared segment. If this is done, then
you may need to reassemble the bootstrap modules for each of the products
that use GDDM.

Chapter 3. X Client Application Considerations 87

 2. Make a copy of the existing named GDDM shared segment with a different
name for use by the X Window System GDDM interface modules. If you do
this, then you must zap the load modules for those products that will be used
with the new GDDM shared segment for the X Window System GDDM
interface. This must be done to point the module to the name of the new
GDDM shared segment that must be accessed in order to use the X Window
System GDDM interface.

On our VM system we opted to make a copy of the existing named GDDM
shared segment with a different name for use by the X Window System GDDM
interface modules.

An example of a GDDM application that is commonly used under VM is
ADMCHART. We tested ADMCHART with the X Window System GDDM interface
for VM and, in order to do this, we had to zap the ADMCHART load module to
have it point to the new named GDDM shared segment. You can use the
following steps as a guide to using ADMCHART with the VM X Window System
GDDM interface:

 1. Ensure you have access to the TCPMAINT 592 minidisk, the GDDM minidisk
and the minidisk that holds the C/370 libraries.

 2. Copy the file ADMCHART MODULE to your A disk.

On our VM system we have a production GDDM shared segment called
ADMXA230. When we installed the X Window System GDDM interface we
reinstalled a copy of this GDDM shared segment and called it GDDMXD.

The ADMCHART MODULE points to ADMXA230. In order to use ADMCHART
with the X Window System GDDM interface we ″zapped″ the ADMCHART
MODULE to point to GDDMXD.

 3. You can zap ADMCHART using the ZAP command under VM. This command
can either accept input from the CMS command line or from an input file
called filename ZAP, where filename can be any name you choose. We
recommend using an input file because it minimizes the chance of a typing
error.

Create a ZAP input file called ADMCHART ZAP on your A disk. The contents
of this file are illustrated in Figure 49. In this file you must name the module
you are going to zap (in this case ADMCHART), verify the contents of the
bytes you are going to replace, and specify the new byte values that will
replace the bytes that were verified. The starting location of the bytes to be
replaced is specified by an offset from the beginning of the module.

In the ZAP input file in Figure 49 we verify that the contents of the 8 bytes at
offset 0CB0 is C1C4D4E7C1F2F3F0 which is the byte representation of
ADMXA230. We then replace these bytes, again at offset 0CB0 with
C7C4C4D4E7C44040, which is the byte representation of GDDMXD.

NAME ADMCHART
VER 0CB0 C1C4D4E7C1F2F3F0
REP 0CB0 C7C4C4D4E7C44040
DUMP ADMCHART ALL

Figure 49. Contents of the ZAP Input File ADMCHART ZAP

 4. Execute ZAP by typing the following command at the CMS command line:

88 X Window System Guide

ZAP MODULE (INPUT ADMCHART

 5. For VM/XA systems only, enter the following command from the CMS
command prompt:

SET STORECLR ENDCMD

This ensures that GETMAIN requests by the X Window System GDDM
interface code are processed correctly.

 6. Activate the X Window System GDDM interface by issuing the following
command:

GDDMXD ON

You should see the message GDDMXD/VM active.

 7. Set the following CMS global variables by issuing these three commands:

SET LDRTBLS 25
GLOBAL LOADLIB EDCLINK
GLOBAL TXTLIB ADMNLIB GDDMXD ADMPLIB ADMGLIB X11LIB COMMTXT IBMLIB
EDCBASE CMSLIB

 8. Identify the target X server display using the following CMS command:

GLOBALV SELECT CENV SET DISPLAY <X client display variable>

where the <X cl ient display var iable> is the variable that the X client must
use to access the X server. It has the format host:0.0 where host is the
Internet address or host name of the X server and 0.0 represents the target
server.server screen. For example, when using our OS/2 machine as the X
server, since it had the Internet address 9.67.38.89, we typed the command:

GLOBALV SELECT CENV SET DISPLAY 9.67.38.89:0.0

 9. Ensure that the X server has authorized the VM host as an X client. For
specific details on how to do this please refer to 4.1.6, “Controlling X Client
Access to AIX/6000” on page 125 for AIX as the X server, 4.2.4, “Controlling
X Client Access to OS/2” on page 132 when OS/2 is the X server, and 4.3.1.4,
“Controlling X Client Access” on page 153 for a DOS X server.

10. In order to interact with ADMCHART using the X server keyboard you will
need to alter the keyboard mapping for the Enter key. We discovered that
the default keyboard mappings provided with the X Window Systems for both
OS/2 and AIX had the Enter key set to the keysym name RETURN. You need
to remap this key′s keysym name to EXECUTE. Please refer to 4.2.2.1,
“Remapping the Keyboard under OS/2” on page 128 for a description of how
to perform the remapping with OS/2 and 4.1.5, “Remapping the Keyboard
Under AIX/6000” on page 123 for AIX.

11. Invoke ADMCHART from the CMS command line.

Chapter 3. X Client Application Considerations 89

An example of the ADMCHART home panel for ADMCHART is illustrated in
Figure 38 on page 71.

You will notice that the ADMCHART panel illustrated in Figure 38 on page 71
is partly obscured or clipped. This window has been opened at an OS/2 X
server that had an 8513 screen. The maximum window size possible on this
screen is not big enough to accommodate the default GDDM graphics
display area specified by the VM X Window System GDDM interface. Please
refer to 3.2.3.1, “Application Resource File for GDDM under VM” for more
information.

3.2.3.1 Application Resource File for GDDM under VM
In 3.2.2.1, “Building an Application Resource File under VM” on page 84 we
describe how to build an application resource file under VM. As with
user-written applications, it is also possible to modify the runtime characteristics
for GDDM applications by specifying resource values in the application resource
file X DEFAULTS.

In Chapter 12 of the TCP/IP Version 2 Release 2 for VM: User′s Guide you will
find a description of the application resources for which you can define values to
specify the characteristics for GDDM applications that use the VM X Window
System GDDM interface. There are more resources available under VM as
opposed to MVS. The VM GDDM resources are described in Table 11.

Table 11 (Page 1 of 2). Application Resources for GDDM under VM

Resource Description

Geometry Specifies the size and location of the initial GDDM window at
the X server. The size of the GDDM graphics display area is
dependent upon the size of the window. Unlike MVS, VM
provides four possible GDDM graphics display area sizes
which are determined by the width of the X server window.
They are shown in Table 12 on page 91. The default GDDM
graphics display area is 720 pixels wide by 512 pixels high,
while the minimum is 480 pixels wide by 352 pixels high. In
order to achieve the minimum size, VM implements a
contraction algorithm as described below for the Compr
resource option. If the window is specified as less than this,
then the GDDM display area will be clipped.

GColornn Specifies the GDDM color that is mapped onto an X Window
System color.

GMCPnn Specifies the GDDM multicolor pattern that is mapped onto an
X Window System color.

ZWL Specifies that the server use the fastest drawing algorithm to
draw lines. The default is N because if this option is used it
may result in lines that are not the width they were intended to
be by the application.

XSync Specifies that the X Window System GDDM interface send one
request at a time to the X server (operate in a synchronous
mode) when set to Y. The default is that the interface
communicate with the X server asynchronously which is the
more usual for the X protocol.

CMap Specifies whether to load the default color map or not. This is
specified as N if the color map at the X server is going to be
used, as opposed to the default color map that otherwise
would be loaded by the MVS X Window System GDDM
interface.

90 X Window System Guide

You specify these resource options in the application resource file X DEFAULTS.
You simply edit this file and enter the X Window System GDDM interface
resource options after existing entries that you may have for other X client
applications.

A sample application resource file for GDDM applications is provided with the X
Window System for VM. It is called X DEFAULTS and you will find it on the
TCPMAINT 592 minidisk.

In 3.1.3.1, “Application Resource File for GDDM under MVS” on page 72 you will
find an example of the application resource file for the MVS X Window System
GDDM interface. The following example of an application resource file for VM is
included to demonstrate some of the additional resources available with the VM
X Window System GDDM interface.

An example of application resource file entries for a VM GDDM application is
shown in Figure 50 on page 92.

Note: The application resource file is case sensitive and so the variables must
be coded exactly as shown.

Table 11 (Page 2 of 2). Application Resources for GDDM under VM

Resource Description

HostRast Specifies whether the raster processing is done at the host or
the workstation. The default for this option is N, which means
that the raster processing is done at the workstation. You
should choose Y when the GDDM application involves
multiplane symbol sets or GDDM color mixing.

XCIConn Specifies whether the X Window System GDDM interface
should close the window at the X server when the GDDM
application finishes. The default is Y, which means the window
will close when the GDDM application finishes. N means that
the window will be left open and will continue to display the
last GDDM graphics window displayed at the workstation even
though the application has closed down. The only way to close
this window is at the X server itself.

Compr Controls the technique used to compress bitmapped data when
the X server window size has been defined as 480 pixels by
352 pixels. The default value is O for OR. The other choice is
A for AND.

PDTrace Specifies whether the problem determination trace should be Y
(for ON), or N (for OFF, the default) which means X Window
System GDDM interface trace data will not be generated.

Table 12. GDDM Window Width and Graphics Display Area Relationship

Window Width (pixels) GDDM Graphics Display Area (pixels)

< 650 450 wide by 350 high

650 to 849 720 wide by 512 high

850 to 1024 960 wide by 682 high

> 1 0 2 4 1200 wide by 864 high

Chapter 3. X Client Application Considerations 91

gddmx*Geometry: 500x400+10+10
gddmx*GColor1: Purple
gddmx*GColor2: Orange
gddmx*GColor4: White
gddmx*ZWL: N
gddmx*XSync: N
gddmx*CMap: Y
gddmx*HostRast: N
gddmx*XCIConn: Y
gddmx*Compr: A
gddmx*PDTrace: N

Figure 50. Example Application Resource File Entries for GDDM Applications

The application resource file entries shown in Figure 50 specify the following:

gddmx*Geometry: 500x500+10+10 specifies a window at the X server that will
be 500 pixels wide by 500 pixels high and will be 10
pixels in the X direction and 10 pixels in the Y
direction from the top left-hand corner of the display.
This will mean that the GDDM graphics display area
will be 480 pixels by 352 pixels.

gddmx*GColor1: Purple specifies that the X Window color purple should be
displayed for the GDDM color blue.

gddmx*GColor2: Orange specifies that the X Window color orange should be
displayed for the GDDM color red.

gddmx*GColor4: White specifies that the X Window color white should be
displayed for the GDDM color green.

gddmx*ZWL: N specifies that line widths will be displayed at normal
width.

gddmx*XSync: N specifies that the communication to the X server is
asynchronous.

gddmx*CMap: Y directs the X Window System GDDM interface to load
the default color map.

gddmx*HostRast: N directs that raster processing be done at the
workstation.

x*XCIConn: Y specifies that the connection to the X server be
closed when the application is closed.

x*Compr: A specifies that the compression algorithm used to
achieve a 480 pixel by 352 pixel graphics display
should use the logical AND function.

gddmx*PDTrace: N specifies that no X Window System GDDM interface
trace data should be generated.

We set these options in an X DEFAULTS file on our A disk and started up the VM
X Window System GDDM interface as described in 3.2.3, “Using GDDM
Applications under VM” on page 87. We identified an OS/2 X server as the
target display and started ADMCHART from the CMS command line. A window
as illustrated in Figure 51 on page 93 was opened at the OS/2 X server.

92 X Window System Guide

Figure 51. Display at an OS/2 X Server for ADMCHART under VM/CMS

Notice that the GDDM display area in Figure 51 is not clipped at all. This is
because we set the X window width as 500 pixels, which means that the GDDM
display area will be set at 450 pixels wide by 350 pixels high. This can be
displayed on a PS/2 8513 screen.

3.2.3.2 APL2 Character Set Keyboard for GDDM under VM
The support for the APL2 character set under VM is exactly the same as that
provided with the MVS X Window System GDDM interface. The following
description differs only in terms of the file names and operating system
terminology.

Unfortunately GDDM applications that require APL2 characters to be input from a
keyboard are not classic X Window System applications because they are not
truly device independent. These applications are designed to operate with an
IBM 3179-G display and an APL2 keyboard where physical keys correspond to
specific character representations.

The X Window System GDDM interface for VM provides a mechanism which
allows the keyboard at an X server to be used as an APL2 keyboard. A map is
provided which allows the X Window System GDDM interface to accept
keystrokes from the X server and translate them into valid APL2 data for the X
client application.

When an application is started it initializes the X Window System GDDM
interface which looks for a file called GDXALTCS PSS. This file provides the
default mapping for the primary and alternate character sets associated with an
IBM 3179-G display. You will find this file on the TCPMAINT 592 minidisk.

In an X Window environment, each physical key is associated with a keycode.
The VM X Window System GDDM interface uses GDXALTCS PSS to map
keycodes into characters that are then sent to the GDDM application.

Chapter 3. X Client Application Considerations 93

Characters are represented by keycodes in one of the following ways:

 1. A single keycode only.

 2. A keycode with a modifier keycode.

The two modifier keys that are used are the Shift and the Alt keys.

The APL2 character set mode is toggled on by pressing the Backspace key
together with the Alt key. This is indicated by the characters (APL) in the title
bar of the X window at the X server as shown in Figure 43 on page 77. This
means that you are able to use the APL2 character set at your X server
keyboard.

GDXALTCS PSS only comes into play when the APL2 character set is toggled on.

The default mapping in GDXALTCS PSS assumes a keyboard at the X server that
is equivalent to the IBM 101-key Enhanced Keyboard. What this actually means
is that it is assumed that the physical key represented by a particular keycode
has the appropriate primary and alternate characters on that key as you would
find on an IBM 3179-G 101-key Enhanced Keyboard. Where this is not the case it
is possible to override the default mapping.

If the keyboard at your X server is not set out such that characters correspond to
particular keycodes as expected by the VM X Window System GDDM interface,
then you can use the following steps as a guide to providing a customized
mapping for your keyboard:

 1. The first thing you need to know is what is the keycode associated with each
physical key on your keyboard. Provided with the X Window System GDDM
interface is an X client program called KEYCODE. You will find this on the
TCPMAINT 592 minidisk. When invoked this program opens a window at
your server which will allow you to determine the keycode for each key that
is pressed. Invoke KEYCODE as follows:

a. Ensure that the X server has authorized the VM host as an X client.

b. Set the LOADLIB and TXTLIB search order using the following CMS
commands:

SET LDRTBLS 25
GLOBAL LOADLIB EDCLINK
GLOBAL TXTLIB X11LIB COMMTXT EDCBASE IBMLIB CMSLIB

 c. Identify the target X server display using the following CMS command:

GLOBALV SELECT CENV SET DISPLAY <X client display variable>

where <X cl ient display var iable> is the variable that the X client must
use to access the X server. It has the format host:0.0 where host is the
Internet address or host name of the X server and 0.0 represents the
target server.server screen. For example, when using our OS/2 machine
as the X server, since it had the Internet address 9.67.38.89, we typed the
command:

GLOBALV SELECT CENV SET DISPLAY 9.67.38.89:0.0

94 X Window System Guide

d. From the CMS command line type:

KEYCODE

e. KEYCODE will open a window at your X server. Press any key and
notice the corresponding keycode. Figure 44 on page 78 shows the
KEYCODE window after the Alt and Backspace keys have been pressed.

The display in Figure 44 on page 78 shows that the keycode for the
Backspace key is 17 and the Alt key is the modifier.

 2. IBM provides a sample APL2 character set map in GDXAPLCS SAMPMAP on
the TCPMAINT 592 minidisk. Copy this to GDXAPLCS MAP on your A disk.
When the VM X Window System GDDM interface is initialized it looks for
GDXAPLCS MAP, which it will use to override the default APL2 character set
mappings.

 3. Based on the keycodes you obtained from the KEYCODE application you can
edit GDXAPLCS MAP and change the character codes associated with each
keycode to match your keyboard. A section of the contents of GDXAPLCS
MAP is illustrated in Figure 52.

 0a 00 f1 08 72 08 da
 0b 00 f2 08 a0 08 fb
 0c 00 f3 00 4c 08 dc
 0d 00 f4 08 8c 08 dd
 0e 00 f5 00 7e 08 cd
 0f 00 f6 08 ae 08 cf
 10 00 f7 00 6e 08 ed
 11 00 f8 08 be 08 fd
 12 00 f9 08 78 08 cb
 13 00 f0 08 71 08 ca
 14 00 4e 00 60 08 db
 15 08 b6 08 b8 08 ee
 19 00 d8 00 6f 08 58
 1a 00 e6 08 b4 08 66
 1b 00 c5 08 b1 08 45
 1c 00 d9 08 b3 08 59
 1d 00 e3 08 80 08 63

Figure 52. Example of the Contents of GDXAPLCS MAP

The column values in the map in Figure 52 have the following meaning:

Column 1 is the hexadecimal keycode for the physical key.

Column 2 defines whether the character is in the primary or alternate
character set when the key corresponding to the keycode is
pressed alone. 0 means the character is in the primary set while
8 means the alternate character set.

Column 3 is the EBCDIC code for the character in the character set when
the key corresponding to the keycode is pressed alone.

Column 4 defines whether the character is in the primary or alternate
character set when the key corresponding to the keycode and the
Shift key are pressed together. 0 means the character is in the
primary set while 8 means the alternate character set.

Chapter 3. X Client Application Considerations 95

Column 5 is the EBCDIC code for the character in the character set when
the key corresponding to the keycode and the Shift key are
pressed together.

Column 6 defines whether the character is in the primary or alternate
character set when the key corresponding to the keycode and the
Alt key are pressed together. 0 means the character is in the
primary set while 8 means the alternate character set.

Column 7 is the EBCDIC code for the character in the character set when
the key corresponding to the keycode and the Alt key are pressed
together.

The primary character set is available when the APL2 character set is
toggled either on or off. The alternate character set is only available when
the APL2 character set is toggled on. Consider the first row in the table as
an example:

0a is the keycode for what is normally the 1 key.

00 means that when this key is pressed alone the character
represented by the code in column 3 (in this case f1) will be sent
to the application.

f1 is the EDCDIC code for the character 1.

08 means that when the APL2 character set is toggled on, then when
this key and the Shift are pressed together the character
represented by the code in column 5 (in this case 72) will be sent
to the application.

72 is the EBCDIC code for the diaeresis character.

08 means that when the APL2 character set is toggled on, then when
this key and the Alt are pressed together the character
represented by the code in column 7 (in this case da) will be sent
to the application.

da is the EBCDIC code for the Down Tack Up Tack character.

For a full list of the character codes and the associated default keycodes
please refer to Appendix C, TCP/IP Version 2 Release 2 for VM: User′s
Guide.

 4. To test the mapping we changed the entry for the keycode for the 1 key. The
default entry in GDXAPLCS MAP for this keycode is:

 0a 00 f1 08 72 08 da

We altered it to:

 0a 00 f2 08 72 08 da

This means that whenever this key is pressed, the character 2 will be sent to
the GDDM application.

Note: Remember that this mapping will only happen when the APL2
character set is toggled on. GDXAPLCS MAP has no effect when the APL2
character set is off.

96 X Window System Guide

3.3 Under AIX/6000
There are many clients delivered with AIXwindows Environment/6000. Some are
already compiled, the others are in source code. The examples that can be
compiled reside in the /usr/lpp/X11/Xamples directory. The files in this directory
are not mandatory for AIXwindows. You can delete the whole directory, but it is
useful to have some of these clients available as executable programs.

3.3.1 Compiling and Linking under AIX/6000
You can build all of the clients in the /usr/lpp/Xamples directory in one step, or
you can build the clients selectively. Building only the clients you need is useful
when you are low on disk space. For building all the clients you will need at
least 20MB of free disk space in your /usr file system. This requirement is valid
for AIX V3.2 but more space is required if using more recent levels of the AIX
operating system. The compilation of all examples took over 4 hours on our IBM
RISC System/6000 Mod. 530. First let′s see how to create all the samples. You
can find information in the /usr/lpp/X11/Xamples/README file.

3.3.1.1 Creating the Sample Clients
Use the following steps as a guide to creating all sample X clients:

Installing the Imake Configuration: Imake is a project management tool that is
used for building the X Window System from source code. In particular, it is the
tool of choice for public domain X programs that are distributed in source form.
Imake uses a combination of make and the C preprocessor (cpp). Cpp does not
do anything except process text files: it cannot invoke other programs.
Although make can actually do work, it lacks the ability to test the value of a
variable, making it inflexible. What imake does is combine the best features of
cpp and make. The real value of imake is that it allows easy creation of
Makefiles under changing conditions.

To build and install the imake configuration (including the xmkmf and
makedepend commands) without building the entire sample tree located in
/usr/lpp/X11/Xamples, do the following:

For imake:

 1. Enter cd /usr/lpp/X11/Xamples/config.

 2. Enter make -f Makefile.ini to build the imake command.

 3. Enter /imake -DTOPDIR=/usr/lpp/X11/Xamples to create the Makefile for the
config directory.

 4. Enter make install to install the config directory (this directory contains
the template files that imake requires) and the ′ imake ′ command.

For xmkmf and makedepend:

 1. Enter cd /usr/lpp/X11/Xamples/util.

 2. Enter imake -I/usr/lib/X11/config -DTOPDIR=/usr/lpp/X11/Xamples to
make the Makefile for the util directory.

 3. Enter make Makefiles to make all Makefiles in subdirectories.

 4. Enter make install to build and install the xmkmf and makedepend
commands.

Chapter 3. X Client Application Considerations 97

Creating the Sample Clients: To create all of the executables in the Xamples
directory tree, follow these steps:

 1. Make sure the date is set correctly.

 2. Enter cd /usr/lpp/X11/Xamples.

 3. Enter make World.

 4. Optional - Enter make install. This wil l put all samples into
/usr/lpp/X11/Xamples/bin; add this directory into your search path.

 5. Optional - Enter make install.man. This wil l put all sample man-pages into
/usr/lpp/X11/Xamples/man; add this directory to the MANPATH environment
variable.

 6. If a problem occurs while in the make World process, in the
/usr/lpp/X11/Xamples directory copy the file Makefile.bak to Makefile and
restart the command.

Note: If you don′ t want to compile all of the clients the easiest way is by
deleting the /usr/lpp/X11/Xamples/<clients> directories that you don ′ t want and
then starting with step 1 as described above.

Note: IBM does not support the clients delivered in source code.

The Makefiles needed are created dynamically using the seed Makefile found in
the Xamples directory. The dependencies are then added to these Makefiles.
Finally, each subdirectory is visited, making the executables. This may take
several hours to finish.

The native C compiler must be installed before the executables can be created.

For convenience, all unsupported sample binaries are supplied in
/usr/lpp/X11/Xamples/bin and symbolically linked back to /usr/lpp/X11/bin.

Linking the Sample Extensions into the Server: The shell script
Xamples/server/makeServer can be used to link the sample server extensions
into the server. Before running this script, the samples must be created (as
described above).

X.new is the new server. Rename it to X and place into /usr/lpp/X11/bin to use.

The sample server is required for execution of programs in
Xamples/extension/test.

Building X Client Samples Selectively: To install a client selectively perform the
following steps:

 1. Log in as root and type the following commands at the command prompt:

cd /usr/lpp/X11/Xamples
touch Imakefile
make Makefile
make Makefiles
make linklibs

 2. Use the cd command to point to the directory of the sample you wish to
build.

 3. In this directory type:

98 X Window System Guide

make

The executable code of that client is stored in the current directory. Copy or
move the executable in a directory where your PATH variable points to.

3.3.2 Customizing Application Resources under AIX/6000
To ensure the device independence of an application the X clients can be set up
to make use of resources. A resource is a variable which can control a feature
of an X application. Its value can be Boolean, numeric, or string. We can set
and change the value of these resources in different ways. Resources are used
to define the size of the window, for setting the background and foreground
colors and much more. When customizing AIXwindows we normally use the
$HOME/.Xdefaults file or the xrdb (X resource database manager) command.

When an application is started it reads the resources set by the user or by the
server. Each resource is an entry in a file. The following list shows the
locations where the resource information is searched in ascending order of
priority (the last item has the final say).

 1. /usr/lib/X11/${LANG}/app-defaults/< c l a s s >

 2. /usr/lib/X11/app-defaults/< c l a s s >

 3. ${XAPPLRESLANGPATH}< c l a s s >

 4. ${XAPPLRESDIR}< c l a s s >

 5. RESOURCE_MANAGER property of the root window

 6. $XENVIRONMENT

 7. /usr/lpp/X11/lib/X11/app-defaults/application

 8. -xrm command line arguments

 9. Your widgets argument list

where:

< c l a s s > is the name supplied as the second parameter to
XtInitialize.

RESOURCE_MANAGER means the file that was accessed when xrdb was started.
When xrdb was not started the $HOME/.Xdefaults file is
accessed instead. If this environment variable is not set
then look at the $HOME/.Xdefaults-host, where host is the
name of the machine that the client is running on. One or
more -xrm options can be specified on the command line,
when a client is started. The widgets arguments are
specified in the source code of your client application.

The xrdb command stores resources directly in the server, making them
available to all clients, regardless of the machine the clients are running on.
The xrdb command is used to get or set the contents of the
RESOURCE_MANAGER property on the root window of screen 0. In this way the
resources are available for all clients which run on the specified server. It
allows dynamic changing of defaults without editing files.

Chapter 3. X Client Application Considerations 99

The xrdb client won′ t be invoked when you start AIXwindows. To start xrdb each
time you start your AIX server add the entry xrdb resourcefile in your
$HOME/.xinitrc file.

Placing resources in files allows you to set many resources at once, without the
restriction encountered, when using command line options. You can set different
resources for every user who uses the same X application. As most of the
common clients are written to use the X toolkit they can use the resources. A
resource file normally has this format:

! object.subobject[.subobject...].attribute: value

where:

! comments the resource specification.

object is the client program or a specific instance of the program.

subobjects correspond to levels of the widget hierarchy (usually the major
structures within an application, such as windows, menus,
scrollbars, etc.).

attribute is a feature of the last subject (perhaps a command button),
such as background color or a label that appears on it.

value is the actual setting of the resource attribute (Boolean, numeric,
or string).

Resource components can be linked in two ways:

• By a tight binding, represented by a dot (.).

• By a loose binding, represented by an asterisk (*).

A tight binding means that the components on either side of the dot must be next
to one another in the widget hierarchy. A loose binding is signaled by an
asterisk, a wild card character which means there can be any number of levels
in the hierarchy between the two surrounding components.

There is also a difference between instances and classes. Each component of a
resource has an associated class. For example, in the case of xterm, the color
of text (foreground), the pointer color, and the text cursor are all defined as
instances of the class Foreground. This makes it possible to set the value of all
three with a single resource specification. Initial capitalization is used to
distinguish class names from instance names. The executable file will be
created in the directory. Copy the executable file in the directory where you
have set your PATH environment variable.

With the appres client you can get a list of resources that every X client might
access. The resource information can reside in different files which will be
accessed at the start. However, when a resource is commented out it won′ t be
printed. To obtain a complete list of resources for a client, you have to refer to
the documentation delivered with the application.

Let′s follow the way a client handles the resource information (for example the
background color). A user starts a client program. The client finds the entry for
the background color in the app_default file. It sets the background color to that
value. Then it searches the user′s home/.Xdefaults file for the entry background
color. If the entry is found, the actual setting of the background color changes to

100 X Window System Guide

the new value. The client passes the corresponding colorname to the server
which has to display the client′s window. When the server finds a background
color entry in its resource database (loaded with xrdb) this value will be taken.
However, when the user sets the background color with an option, this will be
the final colorname. With the colorname the server selects the color values in
the colormap table. This color will be shown on the display.

3.3.3 How to Start an AIX/6000 Client
We will show you which steps are necessary in order to have your local X client
display output on a remote X server. There is no difference between a local and
a remote server.

TCP/IP allows us to execute a command on a remote system in several ways. In
our case we assume that we log in to an IBM RISC System/6000. It doesn ′ t
matter if your terminal is a graphics terminal, a local terminal, or if you have
access through a terminal emulator.

3.3.3.1 xterm and aixterm
If you want to display a program which is not programmed as an X client on a
server, AIXwindows Environment/6000 provides you with two X clients which
provide terminal emulators that you can use to start AIX programs such as vi,
smitty, and 3270 emulation. These clients are aixterm and xterm. IBM has
introduced support for xterm in AIX V3.2.5.

The xterm client requires BSD symbolic links to pseudo-devices. The AIX
limitation for these links is 64, which means it is not possible to open more than
64 xterms. xterm supports either the VT102 emulation or the Tektronix 4014
emulation. Xterm is documented in InfoExplorer. Also, there are ″man″ pages
for xterm, or you can type xterm -help that gives you a list and description of the
options.

The IBM version of xterm is aixterm.

In particular, aixterm has no limitation on the number of started emulations. It
also supports the hft (high function terminal) and VTxxx terminal emulations. As
aixterm is an official client in AIX/6000, use InfoExplorer to get a description. We
recommend the use of aixterm when you start specific AIX commands (such as
smitty) or when the server is AIX-based (uses the same font base). Otherwise
you can use xterm.

The following is a list of the resources for the aixterm client.

Chapter 3. X Client Application Considerations 101

! aixterm.autoRaise: false
! aixterm.autoRaiseDelay: 2
aixterm.background: cyan
! aixterm.boldFont: Bld14.500
! aixterm.borderColor: black
aixterm.borderWidth: 0
! aixterm.c132: false
! aixterm.curses: false
! aixterm.cursorColor: black
! aixterm.deiconifyWarp: false
! aixterm.font: Rom14.500
! aixterm.foreground: black
! aixterm.geometry: 80x25+0+0
! aixterm.iconBitmap:
! aixterm.iconGeometry:
! aixterm.iconStartup: false
! aixterm.internalBorder: 2
! aixterm.jumpScroll: false
! aixterm.logFile: XtermLog.XXXX
! aixterm.logging: false
! aixterm.logInhibit: false
! aixterm.marginBell: false
! aixterm.nMarginBell: 10
! aixterm.pageOverlap: 1
! aixterm.pageScroll: false
! aixterm.pointerColor: black
! aixterm.pointerShape: XC_left_ptr
! aixterm.reverseVideo: false
! aixterm.reverseWrap: false
! aixterm.saveLines: 64
! aixterm.scrollBar: false
! aixterm.scrollInput: true
! aixterm.scrollKey: false
! aixterm.statusLine: false
! aixterm.statusNormal: false
! aixterm.textUnderIcon: true
! aixterm.title: aixterm
! aixterm.visualBell: false
! aixterm.vt102: false
! aixterm.warp: false
! aixterm.suppress: false
! aixterm.language:

Figure 53. Available Resources for aixterm

You can change some parameters dynamically. Move the mouse to the
appropriate aixterm window and press the Ctrl key and one of the mouse
buttons. Using the menus that are displayed, you can set resources such as the
scroll bar.

3.3.3.2 Starting a Client
To start a client on a X server perform the following steps:

• Make sure that you have a TCP/IP connection to your server system. For
testing you can use the ping command.

• The X server must be started on the remote system. Unfortunately there is
no standard X client command that can check this.

102 X Window System Guide

• Your host must be authorized to use the X server display. To set or reset
the host authorization use the xhost command at the X server.

• Start your X client with the option:

client -display hostname:0:

where hostname is the name of the server you want to display on. 0 is the
number of the display.

If you cannot display the client on the server, you may get one of the following
error messages:

Xlib: connection to ″rs60003:0″ refused by server
Xlib: Client is not authorized to connect to Server
1356-300 xclock: Cannot make a connection to X server rs60003:0.

If the X server is not running, run the xinit command.
If the X server is running, check the specified display number.

Figure 54. Error Message: Not Authorized to Connect to Server

This indicates that your host has not authorized the client to display a window on
the server. Set the authorization on the server with the xhost command.

1356-300 xclock: Cannot make a connection to X server rs60003:0.
If the X server is not running, run the xinit command.
If the X server is running, check the specified display number.

Figure 55. Error Message: X Server is Not Running

This means that the server is has not been started and the client cannot
establish a connection to the server.

 XIO: fatal IO error 73 (Connection reset by peer) on X server ″″
after 0 requests (0 known processed) with 0 events remaining.

Figure 56. Error Message: X Server is Running, but Connection was Broken

This error message indicates that the connection has been broken. Either the
client window has been closed or the X server has been killed.

3.4 Running OS/2 X Window Clients and OS/2 OSF/Motif Applications

3.4.1 Application Resource File
The X Window System lets you modify certain characteristics of an application at
run time by means of application resources. Typically, application resources are
set to tailor the appearance and possibly the behavior of an application. The
application resources may specify information about an application′s window
sizes, placement, coloring, font usage, and other functional details.

On a UNIX** system, this information can be found in the user′s home directory
in a file called Xdefaults. In the OS/2 environment, this file is called Xdefault and

Chapter 3. X Client Application Considerations 103

is in the \ETC subdirectory. Each line of this file represents resource information
for an application. Figure 57 on page 104 shows an example of a set of
resources specified for a typical X Window System application.

Figure 57. Entry of Xdefault

In this example, the Xclock application automatically creates a window in the
lower left corner of the screen with a digital display in black letters on a pink
background.

You can also use an application-specific resource file on an OS/2 workstation.
The name of this file is set in the XENVIRONMENT variable. For example, if you
wanted to use a special resource file for the Xclock application and the
information was stored in the file C:TCPIPETCXCLOCK.AD, then you would
include this command in your CONFIG.SYS or execute it from a command
prompt:

SET XENVIRONMENT=C:TCPIPETCXCLOCK.AD

or:

xrdb -load xclock.ad

You can use the XCLISET.CMD as well to set this variable (as in the sample
provided).

If you fail to use an application resource file, you may experience strange
behavior from some of your X Window applications such as extremely large or
peculiar fonts. This is caused by some poor guesses by the application in the
absence of information normally provided from the application resource file.

There are several utilities provided to manipulate information in the application
resource file. Listed below is a description of each of these utilities.

Utility Description

XRDB X client application to get or set values in the Application Resource
File.

APPRES Lists the resources that currently might apply to a client.

LISTRES Lists the resource database for one or more specified widgets.

VIEWRES Displays the hierarchy of the widget set. You can expand each node in
the display to see the resources associated with the node.

These resources can also be set on the RESOURCE_MANAGER property of the X
server. This property provides a single, central place where resources, which
control all applications that are displayed on an X server, are found.

104 X Window System Guide

Note: Although the utility EDITRES is described in the documentation it is not
used. The X Window System client uses the environment variable
XUSERFILESEARCHPATH to locate the directories where application
default files reside. With CSD UN60006 (newly available at the time of
writing) updated documentation is available which describes this variable.

3.4.2 Running OS/2 X Window Clients and OSF/Motif Applications
The OS/2 X Window system is supplied with a number of X client programs and
several utilities. They are provided to assist with customizing and administering
the PMX server. There are also utilities to control a remote X Window System
server and to start the OS/2 X Window System and other X Window System
client applications. They are listed in Table 13 and Table 14 on page 106.

Table 13 (Page 1 of 2). X Window Utilities

Program Description Where to find more
information

XINIT Starts the PMX X Window System Server
Guide

XPROB Displays window and font properties X Window System Server
Guide, 3.4.2.3, “XPROP” on
page 109

XEV Displays PMX events such as
movement, re-sizing or text entry.

X Window System Server
Guide

XCLISET Set Environment Variables for X client 2.6.5.1, “Setting Environment
Variables” on page 49

XFD Displays the characters of a font X Window System Server
Guide, 4.2.7, “OS/2 X Fonts”
on page 138

XHOST Controls client host access X Window System Server
Guide, 4.2.4, “Controlling X
Client Access to OS/2” on
page 132

XLSFONTS Generates a listing of fonts used on
PMX

X Window System Server
Guide

XFONTSEL Prewiewing and Selecting Fonts Does currently not work �1�

XMODMAP Displays or alters the X keyboard
modifier map and keysym table

X Window System Server
Guide, 4.2.2, “Keyboard
Definition” on page 127

XSCOPE Displays the X protocol activity
between an X client and PMX

X Window System Server
Guide

XSET Sets characteristics for PMX X Window System Server
Guide, 4.2.7.1, “Adding New
Fonts” on page 142

XWININFO Displays PMX window information X Window System Server
Guide 3.4.2.1, “XWININFO” on
page 108

XSTDCMAP Defines colormap properties X Window System Server
Guide

Chapter 3. X Client Application Considerations 105

Table 13 (Page 2 of 2). X Window Utilities

Program Description Where to find more
information

XRDB X Client application to get or set the
application Resource File

X Window System Client
Guide, 3.4.1, “Application
Resource File” on page 103

APPRES Lists the resources that currently might
apply to a client

X Window System Client
Guide

LISTRES Lists the resource database for one or
more specified widgets

X Window System Client
Guide

VIEWRES Displays the hierarchy of the widget
set. You can expand each node in the
display to see the resources associated
with the node.

X Window System Client
Guide

Note: Xfontsel had problems with displaying the defaults in the current release.
We were unable to display the fonts; only the selection bar was displayed.
After installing newly developed code including an update of the Xdefault
file it works fine. This update should be available in the newly available
CSD UN60006.

Table 14 (Page 1 of 2). X Window System Client Programs

Program Description Where to find more
information

XMPIANO Sample for application developed with
OSF/Motif widget

3.4.2.6, “XMPIANO” on
page 110

XEYES Eyes that watch your mouse pointer
(background is viewable)

XEDIT Editor X Window System User′s
Guide �1�3.4.2.2, “XEDIT” on
page 108 , Appendix E,
“XEDIT Subcommands” on
page 183

MAZE Labyrinth

XCLOCK Clock 3.4.1, “Application Resource
File” on page 103

OCLOCK Clock without tick marks

XSETROOT Setting root window characteristics X Window System User′s
Guide �1� �2�

XCALC Calculator Program 3.4.2.4, “XCALC” on page 109,
Appendix B, “Supplied
Application Resource File
Definitions for XCALC” on
page 167

XANT 3270 terminal emulator 3.4.2.5, “XANT” on page 109

XLOGO Opens a window with a ′X′ sign

XHW Opens a window with a ″Hello World″
message. This is a good test facility
because it is very simple.

106 X Window System Guide

Table 14 (Page 2 of 2). X Window System Client Programs

Program Description Where to find more
information

XHELLO Opens a window with a ″Hello World″
message under PMX. This is a good
test facility because it is very simple.

Note:

�1�See bibliography at “Additional Publications” on page xix.

�2�PMX does not represent an X Window manager, so the PM color can′ t
be changed. You would need to use another platform, such as AIX, to
test this function.

To set up an environment to run these applications follow these steps:

 1. Start the X Window System server from the TCP/IP folder on your OS/2
desktop. This provides access to the resources that are shared among many
X applications, such as the following:

• Screen
• Keyboard
• Mouse
• Fonts
• Graphics contexts

 2. Ensure that you have set your display environment variables. Whenever you
start an X Window application, it will look up the variable DISPLAY in your
OS/2 system environment. You can set this variable in the configuration
notebook or from an OS/2 command prompt with this command:

SET DISPLAY=9.24.104.51:0

where 9.24.104.51 is our IP address and 0 is the screen on which we want to
display the information.

You can also display these applications on any X Window server. To define
where the specific application is displayed depends on the setting of the
DISPLAY environment variable. To display the application on the AIX X
Window System server we had to set the variable to either of the following:

SET DISPLAY=9.67.38.75:0
SET DISPLAY=RS60007:0

 3. Many of the commonly used X Window functions are stored in dynamic link
libraries which are called by X Window applications at runtime. These
dynamic link libraries are normally copied to your TCPIPDLL directory at
installation. The files that contain the dynamic link libraries are:

• Xaw.dll
• oldX.dll
• Xext.dll
• Xmu.dll
• Xlib.dll
• Xt.dll

Please ensure that these files are on your system.

Chapter 3. X Client Application Considerations 107

You can start any of these applications from an OS/2 command prompt. In the
following section you will find some samples of the utilities and X Window
System client applications.

3.4.2.1 XWININFO
To display information about a window use the command XWININFO.

� �
OS2 D:\tcpip\bin>xwininfo

xwininfo: Please select the window about which you
would like information by clicking the
mouse in that window.

xwininfo: Window id: 0x800009 ″xclock″

Absolute upper-left X: 8
Absolute upper-left Y: 609
Relative upper-left X: 8
Relative upper-left Y: 609
Width: 150
Height: 150
Depth: 8
Visual Class: StaticColor
Border width: 0
Class: InputOutput
Colormap: 0x21 (installed)
Bit Gravity State: NorthWestGravity
Window Gravity State: NorthWestGravity
Backing Store State: NotUseful
Save Under State: no
Map State: IsViewable
Override Redirect State: no

 Corners: +8+609 -866+609 -866-9 +8-9
 -geometry 150x150+8+609� �

Figure 58. Sample Output from XWININFO Command

3.4.2.2 XEDIT
XEDIT is a simple text editor for X. It provides a window consisting of the
following four areas:

 1. Commands Section

A set of commands that allows you to exit XEDIT, save the file, or load a new
file into the edit window.

 2. Message Window

Displays XEDIT messages. In addition, this window can be used as a scratch
pad.

 3. Filename Display

Displays the name of the file currently being edited, and whether this file is
read-write or read-only.

 4. Edit Window

108 X Window System Guide

Displays the text of the file that you are editing or creating.

Cursor and Command control are provided through several CTRL-key
combinations. For further information for the editor see either X Window System
User′s Guide (see “Additional Publications” on page xix) or Appendix E, “XEDIT
Subcommands” on page 183. For example see Figure 95 on page 147.

3.4.2.3 XPROP
If you need info about the window and font properties use the XPROP command.

� �
OS2 C:\>xprop
WM_PROTOCOLS(ATOM): protocols WM_DELETE_WINDOW
WM_CLASS(STRING) = ″D:\\TCPIP\\BIN\\xclock.exe″, ″XClock″
WM_HINTS(WM_HINTS):

Client accepts input or input focus: False
Initial state is Normal State.
bitmap id # to use for icon: 0x400001
bitmap id # of mask for icon: 0x400003

WM_NORMAL_HINTS(WM_SIZE_HINTS):
user specified location: 5, 605
user specified size: 150 by 150
window gravity: SouthWest

WM_CLIENT_MACHINE(STRING) = ″ITSO51″
WM_COMMAND(STRING) = { ″D:\\TCPIP\\BIN\\xclock.exe″ }
WM_ICON_NAME(STRING) = ″D:\\TCPIP\\BIN\\xclock.exe″
WM_NAME(STRING) = ″D:\\TCPIP\\BIN\\xclock.exe″� �

Figure 59. Sample Output XPROP Command

3.4.2.4 XCALC
Figure 60 shows the calculator program running on the Workplace Shell:

Figure 60. Xcalc (OS/2 X Window Client Application)

3.4.2.5 XANT
If you have access to a S/390 processor running TCP/IP for MVS or VM, then you
should try running the X Window 3270 emulator supplied with X Window System
client. Use this command to start the emulator:

XANT 9.67.38.65

where 9.67.38.65 is the address of the S/390 processor.

Chapter 3. X Client Application Considerations 109

Figure 61 on page 110 shows the graphics capabilities of the XANT 3270
terminal emulator:

Figure 61. Xant (OS/2 X Window Client Application)

When you install the OSF/Motif kit, an application called XMPIANO comes as a
sample application developed using the OSF/Motif widget. To run this application
you need to have the X Window System client installed at your workstation.

3.4.2.6 XMPIANO
On an OS/2 command prompt type XMPIANO and press Enter. You should see
the following window at the X Window System server screen:

110 X Window System Guide

Figure 62. OSF/Motif Application XMPIANO

3.4.3 Developing of X Window Client and OSF/Motif Applications
The ability to run X client and Motif applications on your OS/2 workstation is
provided by the X Client Runtime Services and the OSF/Motif Runtime Services,
respectively. To develop such applications you also need X Client Programmer ′s
Toolkit and OSF/Motif Programmer′s Toolkit installed on your OS/2 workstation.
For more information refer to 2.6, “Installing OS/2 X Window System Client and
OS/2 OSF/Motif Kits” on page 46.

The X Window System client provides a set of application programming
interfaces that enable you to create an X Window program which will use the X
protocol to send and receive information to and from an X server for
presentation on a screen. The X program communicates to an X server using
sockets.

The X Window System client provides these components for development of an X
client application for OS/2:

Component Subdirectory

Library files LIB

Sample Source Code SAMPLESX11

X Header Files INCLUDEX11

X Bitmap Files INCLUDEX11BITMAPS

The Import Library files consist of:

File Description

Xlibi.lib X

Xti.lib X Intrinsics

Xexti.lib X extensions

Xmui.lib X Miscellaneous Utilities

oldXi.lib X10 compatibility routines

Xawi.lib X Athena Widgets

Chapter 3. X Client Application Considerations 111

The X Window System client requires that the following be installed and running
on the OS/2 workstation for application development:

• TCP/IP Version 2.0

• High Performance File System (HPFS)

• A C 32 bit compiler (for instance, the IBM CSET++)

If you intend to develop OSF/Motif applications, you need the OSF/Motif kit,
which includes:

• Motif library (Xm)

• Motif header files

• Motif resource manager library (Mrm)

• Motif resource manager header library

• A proof of licence

For more information on how to develop X Window System client and OSF/Motif
applications, refer to X Window System Client Guide.

3.4.4 Tips for Porting Applications from UNIX
When porting an application from a UNIX system to an OS/2 system, you should
consider these important recommendations:

 1. The C Set/2 /sm switch is often needed to get the maximum migration
allowances for constructs often found in UNIX C code.

 2. The /ms switch is needed to ensure _System linkage instead of _Optlink
linkage for all calls. When you use this switch, you must explicitly include
header files. Many UNIX applications do not include these header files.
Without them, the application will exit abnormally under OS/2 stating
exception in C library routine.

 3. Extensive use of signals must be avoided or rewritten.

 4. Some UNIX system calls such as pipe and fork have no OS/2 equivalent. Try
to simply avoid these applications and run the application in one process. If
that is not possible, the application will likely need significant modification to
run under OS/2.

 5. Makefiles must be written to be compatible with NMAKE under OS/2. Refer
to the samples directory provided with the X client product to see an
example of an NMAKE compatible makefile for X Window applications.

Note: More information on this subject will be available in the documentation
which will be shipped with the next CSD.

112 X Window System Guide

Chapter 4. Customizing the X Server

4.1 AIX/6000 X Server
In the following section we describe how to customize the AIXwindows X server
component. Although the Motif window manager is actually an X client
application, we also describe how to customize it here with the server. This is
because the Motif window manager is an integral part of the X server.

4.1.1 AIXwindows Environment/6000 V1.2

4.1.1.1 Starting AIXwindows Environment/6000
Before we start customizing AIXwindows, we will show you how AIXwindows is
started.

Generally there are three methods:

 1. Entering X at the command line. This starts the X server on the local graphic
terminal. No X client is started. Only the root window is displayed on your
screen. You don′ t have a root window menu provided by a window
manager. You cannot enter any command because there is no command
prompt available. You have to log in from another terminal to your host, so
that you can start a client that connects to your X server.

 2. Entering xinit at the command line. This wil l start both the X server and
some X clients such as xmodmap, aixterm, xclock, and mwm. This is the
normal way to start the X server at your display.

 3. Entering startx at the command line. This command is a preferred
alternative to xinit as it is streamlined and includes such functions as setting
the user′s DISPLAY environment variable.

 4. Entering mwm on an aixterm or xterm prompt starts the Motif window
manager. This is useful when you want to restart a window manager or
when your window should run remotely.

Note: For this command to work correctly the X server must be running.
This will not work if you already have started a window manager on your
display.

We chose the xinit command for our further investigations.

The xinit command is a shell script which performs the following actions:

 1. Selects the color database. You can specify your own color database with
the -D pathname option, when you type the xinit command. The xinit
command searches the color database in the following order:

• xinit -D pathname

• /usr/lib/X11/rgb.map.*

Note: The files /usr/lib/X11/$LANG/rgb.*, /usr/lpp/X11/lib/X11/rgb.*, and
/usr/lpp/X11/lib/X11/$LANG/rgb.* are links to the /usr/lib/X11/rgb.* files.

 2. Defines the display variable for the server.

 3. Starts the X server on the current display.

 Copyright IBM Corp. 1992, 1994 113

 4. Executes the xinitrc file to start the X client programs. The xinit shell script
searches the xinitrc file in the following order:

• $XINITRC

• $HOME/.xinitrc

• /usr/lib/X11/$LANG/xinitrc

• /usr/lpp/X11/defaults/$LANG/xinitrc

• /usr/lpp/X11/defaults/xinitrc

 5. Once the server has been started, xinitrc starts the first X client application.
The xinitrc file is a shell script as well. It handles the keyboard mapping and
starts the first clients including the window manager. The keyboard is
assigned with the xmodmap command, which searches the appropriate files
in the following order:

• $HOME/.Xkeyboard

• IMKEYMAPPATH/$KBD_LANG/keyboard

• /usr/lpp/X11/defaults/xmodmap/$KBD_LANG/keyboard

• /usr/lpp/X11/defaults/$LANG/keyboard

For each country-specific keyboard there exists a file description in the
directories /usr/lpp/X11/defaults/xmodmap/$LANG. The .Xkeyboard file is
normally a copy of one of the files in these directories.

 6. When the keyboard has been mapped, there are some X clients which wil l
be started. At least one of the X clients should be aixterm. The starting of a
window manager (mwm) is the last command in the xinitrc file.

 7. The mwm (Motif window manager) reads some configuration files. These are
the mwmrc file and the .Xdefaults file in which the resources for the window
manager are stored. The window manager searches its configuration files in
the following order:

• For the mwmrc file:

a. $HOME/.mwmrc

b. /usr/lib/X11/$LANG/system.mwmrc if $LANG is defined

 c. /usr/lib/X11/system.mwmrc if $LANG is not defined

Note: /usr/lib/X11 is a link to the /usr/lpp/X11/lib/X11 directory.

• For the order of the resource file access please refer to 3.3.2,
“Customizing Application Resources under AIX/6000” on page 99.

4.1.1.2 Customizing AIXwindows Environment/6000
When you have started xinit, you can work with AIXwindows. We assume that
the user is familiar with the window manipulation and knows how to move, scale,
activate, close, and iconize a window, but there are some more features a user
must know in order to work with AIXwindows.

There are files critical to proper AIXwindows customization. These files should
be copied and into your home directory instead of changing the system defaults.
This will allow other users of a particular system to customize their own
windows according to their own requirements. Customizing system files limits
users to system-wide constraints.

114 X Window System Guide

X Windows uses several files for initialization and the user can modify several of
them to create his own environment. The following is a list of appropriate files
for the AIXwindows customization:

/usr/lpp/X11/defaults/Xdefaults.tmpl A sample file which contains
resource information for some X
clients.

/usr/l ib/X11/app-defaults/Mwm This file contains default Motif
settings. Other default files for X
applications reside in the
app-defaults directory.

/usr/l ib/X11/system.mwmrc This file contains the system defaults
for the AIXWindows startup.

/usr/lpp/X11/defaults/xinitrc Contains the appropriate default
AIXwindows resource information.

/usr/lib/X11/rgb.txt Contains a list of default colors
available. Each color has a set of
corresponding numbers determining
the intensities for red, green, and
blue. These colors can be used to
customize items in the xinitrc and
Xdefaults files.

/usr/include/X11/bitmaps Is the directory where the bitmaps
reside, which you can use for
defining your background, icons, etc.

/usr/lpp/X11/fonts Contains a set of fonts usable with
AIXwindows.

With the following commands we can create a specific environment for each
user on the system in the /usr/lib/X11/rgb.txt file:

cp /usr/lpp/X11/defaults/Xdefaults.tmpl $HOME/.Xdefaults
cat /usr/lib/X11/app-defaults/Mwm >>$HOME/.Xdefaults
cp /usr/lib/X11/system.mwmrc $HOME/.mwmrc
cp /usr/lpp/X11/defaults/xinitrc $HOME/.xinitrc

To specify another font you can use the xlsfonts command, which gives a listing
of all the fonts available on your system.

4.1.1.3 Loading xrdb
You have to decide which resources you want to take effect when you display a
client′s output on your screen. There are two ways:

 1. If you don ′ t invoke the xrdb command when you start the X server on your
workstation, the clients that display on your server read their resources from
their own workstations. That means if you start several aixterms each from
another machine, it may be that each background color is different, because
the resource definition varies on each workstation.

 2. When you start xrdb with a resource file (which may be .Xdefaults) the same
aixterms will have the same background color. This is the case if you have
defined that resource in your resource file and you have not started each
aixterm with a different -bg (background color) option.

Chapter 4. Customizing the X Server 115

4.1.2 Customizing Motif Window Manager
The customization of the Motif window manager (called mwm) is controlled in
two ways:

• Through a special file called .mwmrc copied in your home directory.

• Through mwm resources that you can specify in your .Xdefaults file.

The default operation of mwm is largely controlled by a system-wide file called
system.mwmrc, which establishes the contents of the Root menu and Window
menu, how menu functions are invoked, and what key and button combinations
can be used to manage windows. Normally the .mwmrc file in your home
directory is a copy of the system.mwmrc file with user-specified changes.

Let us take a closer look at the following topics:

• The menus and how menus are invoked

• The keyboard focus policy

• How icons are organized

If you have changed your .mwmrc or .Xdefaults file, the changes will not take
effect automatically. When you change the .mwmrc file you have to restart the
Motif window manager (mwm). This can be done by pressing the Shift Ctrl Alt !
key combination twice. If you have changed resource definitions in the
.Xdefaults file for the window manager, restart the window manager too. If you
are working with the xrdb RESOURCE_MANAGER your resource definitions can
be loaded dynamically without restarting the window manager. This can be
done with the following command:

xrdb -load .Xdefaults

This will update the resource settings previously restored in the resource
database. In that case we used the .Xdefaults file as resource file for xrdb. If
you don′ t work with xrdb you can use the same .Xdefaults file as resource file for
your clients.

The system.mwmrc file can be divided into three sections:

• Menu specification (root menu, window menu)

• Key Bindings

• Button Bindings

Customizing the Menu Specifications: mwm has a number of predefined
functions. Each of these has a name beginning with f. The following is an
example with a cascaded menu and using bitmaps.

116 X Window System Guide

Menu TCP/IPMenu
{

″TCP/IP″ f.title
@˜/host.px f.exec ″aixterm -e tn3270 mvs18 &″
″TN VM″ f.exec ″aixterm -e tn3270 vm14 &″
″TN RISC″ f.exec ″rexec rs60002 aixterm -display rs60001:0 &″
″FTP OS/2″ f.exec ″aixterm -e ftp paulb &″

}

Menu ToolsMenu
{

″Tools″ f.title
″mouse slow″ f.exec ″xset m 1″
@˜/test.bm f.exec ″xset m 4″
@shellk.bm f.exec ″aixterm &″

}

Figure 63. Menu Specifications for the Root Menu

The syntax for entries in the root menu as shown in Figure 63 is as follows:

″label″ function

Notes:

 1. To include bitmaps in your root menu, you have to replace the ″label″ with
the @ character followed by the bitmap filename. @∼ stands for your home
directory. When you use only the @ character, mwm searches in the bitmap
directory which is defined by the bitmap directory resource:

Mwm*bitmapDirectory: <path>

 2. Be aware that when you use a bitmap from the AIXwindows X.desktop, they
are in a bitmap format (most of them are in pixmap format). You can convert
those maps using the bitmap icon editor from the desktop. Sometimes you
must change the color attribute, because the icon will be shown as
transparent in your root menu.

Default Window Menu Description

Menu DefaultWindowMenu MwmWindowMenu

{
″Restore″ _R Alt<Key>F5 f.normalize
″Move″ _M Alt<Key>F7 f.move
″Size″ _S Alt<Key>F8 f.resize
″Minimize″ _n Alt<Key>F9 f.minimize
″Maximize″ _x Alt<Key>F10 f.maximize
″Lower″ _L Alt<Key>F3 f.lower
no-label f.separator
″Close″ _C Alt<Key>F4 f.kill

}

Figure 64. Definitions for the Window Menu with Accelerator

The syntax for entries in the window menu as shown in Figure 64 is as follows:

Chapter 4. Customizing the X Server 117

″label″ mnemonics accelerator function

where:

″label ″ is the character string that appears when Window Menu is
invoked.

mnemonics is the underlying part of the label (optional). Once the window
is displayed, you can select an item by typing its mnemonic
abbreviation.

accelerator is the key combination used for invoking the action (optional).

no accelerator window menu

Menu NoAccWindowMenu
{

″Restore″ _R f.normalize
″Move″ _M f.move
″Size″ _S f.resize
″Minimize″ _n f.minimize
″Maximize″ _x f.maximize
″Lower″ _L f.lower
no-label f.separator
″Close″ _C f.kill

}

Figure 65. Definition for the Window Menu without Accelerator

Key Bindings: The following text defines the key bindings.

#
key binding descriptions
#

Keys DefaultKeyBindings
{

Shift<Key>Escape icon|window f.post_wmenu
Meta<Key>space icon|window f.post_wmenu
Meta<Key>Tab root|icon|window f.next_key
Meta Shift<Key>Tab root|icon|window f.prev_key
Meta<Key>Escape root|icon|window f.next_key
Meta Shift<Key>Escape root|icon|window f.prev_key
Meta Ctrl Shift<Key>exclam root|icon|window

f.set_behavior
Meta<Key>Down root|icon|window f.circle_down
Meta<Key>Up root|icon|window f.circle_up

Meta<Key>F6 window f.next_key transient }

Figure 66. Key Bindings

The syntax for the key bindings as shown in Figure 66 is as follows:

[modifier_keys]<Key>key_name context function

118 X Window System Guide

Notes:

 1. The useful contexts for the key bindings are root, window, and icon.

 2. Meta is equal to the Alt key.

The keyboard shortcuts can be invoked when the pointer is within the defined
context. You can define the keyboard shortcuts for more than one context.

Button Bindings: The following text defines the default button bindings.

#
button binding descriptions
#

Buttons DefaultButtonBindings
{

<Btn1Down> frame|icon f.raise
<Btn3Down> frame|icon f.post_wmenu
<Btn1Down> root f.menu RootMenu
<Btn3Down> root f.menu RootMenu
Meta<Btn1Down> icon|window f.lower
Meta<Btn2Down> window|icon f.resize
Meta<Btn3Down> window f.move

}

Buttons ExplicitButtonBindings
{

<Btn1Down> frame|icon f.raise
<Btn2Down> frame|icon f.post_wmenu
<Btn3Down> frame|icon f.lower
<Btn1Down> root f.menu RootMenu
Meta<Btn1Down> window|icon f.lower
Meta<Btn2Down> window|icon f.resize
Meta<Btn3Down> window|icon f.move

}

Buttons PointerButtonBindings
{

<Btn1Down> frame|icon f.raise
<Btn2Down> frame|icon f.post_wmenu
<Btn3Down> frame|icon f.lower
<Btn1Down> root f.menu RootMenu

If (Mwm*passButtons == False)
Meta<Btn1Down> window|icon f.raise

Else
<Btn1Down> window f.raise
Meta<Btn1Down> window|icon f.lower

Meta<Btn2Down> window|icon f.resize
Meta<Btn3Down> window|icon f.move

}

Figure 67. Button Bindings

The syntax for a button specification is very similar to that of a key binding:

 [modifier-key]<button-event> context function

Each button binding can have one or more modifier keys (modifiers are optional)
but a single button event invokes the function. For button bindings the valid
contexts are:

Chapter 4. Customizing the X Server 119

root Background window

window Includes the application windows and the frame

icon Icon area

title Title area of the frame

border Frame (excluding titlebar)

frame Entire frame (title and border)

app Window exclusive frame

You can run AIXwindows Environment/6000 without customization. But normally
every user has his or her requirements. In the following sections we will
investigate the workstation′s environment to satisfy the user ′s requirements.

4.1.3 Customizing Colors
The colormap provides a translation between pixel values writing color images
into workstation displays. Many hardware displays have a single colormap. It
depends on the graphic adapter how many colormaps are supported. Because
colormaps are associated with windows, AIXwindows supports displays with
multiple colormaps and different types of colormaps (8-bit, 24-bit). A colormap is
a collection of colorcells. A colorcell consists of a triple of red, green, and blue.
As each pixel is read out of the display memory, its value is taken and looked up
in the colormap. The values of the cell determine what color is displayed on the
screen. The number of bits per pixel indicates the depth of the display. When
the depth is 8 bits the values 0 through 255 are defined, which means the display
can be 256 colors at one time. Some adapters allow the use of more than one
colormap.

The visual describes the color capability of the workstation. It is an interface
between the device-dependent display and the application program. There are
different strategies for translating pixel values into colors. These strategies are
called visuals. AIXwindows defines six different visuals. We can set the visual
class by starting the X Server. The default visual class is PseudoColor for color
displays and GrayScale for monochrome displays. On the IBM RISC
System/6000 you cannot set the visual class for each window.

The visual is the description of the colormap for the application. There are six
different visuals available:

0 StaticGray

1 GrayScale

2 StaticColor

3 PseudoColor

4 TrueColor

5 DirectColor

The frame buffer is the display memory in which each pixel is stored. The range
for each pixel is from 1-bit up to 24-bit. The value of the pixel is represented as
an index to the colormap. For example, the frame buffer of our graphics color
adapter has 8 bits for each pixel. When the resolution is 1024 pixels vertical and
1280 pixels horizontal the size of the frame buffer memory is approximately
1.5MB. This adapter can display 256 colors at one time.

120 X Window System Guide

The colormap is an array of 256 entries in length. Each entry represents the
value for the colors red, green, and blue. Each entry is 24-bit. In this way we
can display 256 colors at a time, out of 16777216 possible colors.

To determine the color names, the X server (which loads the colormap) uses a
color database. These are the files /usr/lib/X11/rgb*. The printable copy is
stored in the rgb.txt file.

On many workstations the display is limited to 256 or fewer colors, and most
workstations have only one hardware lookup table for colors. In this case only
one application colormap can be installed at a given time. Every application can
allocate and install a new colormap. However, a color that is right for one
application may be wrong for another application which was based on the
colormap previously defined on the system.

You can define your own color database or change the existing database. We
built our own color table. The following are the steps for creating your own color
database:

 1. Enter cd /usr/lib/X11

 2. Create the file color.txt

255 255 255 white
0 0 0 black

255 0 0 red
0 255 0 green
0 0 255 blue

Figure 68. A Sample Color Table

Before we invoked the rgb command, we saved rgb.pag and rgb.dir:

mv rgb.pag rgb.pag.ori
mv rgb.dir rgb.dir.ori

 3. Enter rgb <color

 4. Enter mv rgb.pag color.pag

 5. Enter mv rgbg.dir color.dir

 6. Now you are ready to start the X server with your own color database by
entering the following command:

xinit -D /usr/lib/X11/color

Note: It is possible that you will see more than these five defined colors on your
screen. The reason is that the Motif window manager has defined its own color
resources, and therefore has more colors available than you have defined.

Chapter 4. Customizing the X Server 121

4.1.4 AIX/6000 X Fonts
Each font that AIXwindows can use is stored in a file. The fonts files are located
in one of several directories or in fact may be obtained from a font server.

Please refer to 4.2.7.2, “Using a Font Server” on page 143 for more information
about the font server and an example of its use by an X server. When an X
client requests a server to load a font, the X server searches in the defined font
directories. The default font paths for the AIXwindows server is the
/usr/lpp/X11/lib/X11/fonts directory.

Note: There is also a path /usr/lib/X11/fonts, but it is linked to the
/usr/lpp/X11/lib/X11 font directory.

The font files may have different extensions, as listed below:

snf Server normal font. This is the normal font used by the X server.
These fonts will normally not work when ported to another server.

snf.Z As the font files can be very large, the X server can load compressed
font files.

Sources from fonts are usually in BDF format (Bitmap Distribution
Format), if you want to use fonts which are not already on your local
X-Window server you can either get those BDF Files via FTP and
compile them with the bdftopcf utility or use a font server. Both
methods are described in the next chapters.

pcf Portable compiled font.

The SNF fonts used in earlier levels of AIX have been replaced in
V3.2.5 by PCF fonts. The background is the change from X11R4 to
X11R5: in X11R4 the SNF (Server Normal Fonts) fonts were used while
X11R5 has switched to PCF (Portable Compiled Font). The advantage
of PCF fonts compared to SNF fonts is the capability to transfer
compiled font files, which eliminates compilation on each X Window
server and gives the capability of using a font server.

Note that .bdf files may be converted with the bdftosnf utility into .snf
font files. Also, an additional utility, bdftopcf, is provided for
converting .bdf files to .snf font files.

There are two other files in a font directory:

fonts.dir Every font has a font ID (the XLFD description) which identifies a
font. In the fonts.dir file each XLFD description (font ID) maps to
one font file. When you start an X application that uses a font,
you have to specify the font ID. The client sends the font ID to
the server that loads the font file which maps the font ID. If the
server doesn′ t find the font ID in its fonts.dir files, it generates
an error message on the screen and chooses a default font
instead. You can generate a fonts.dir file for a specific font
directory with the mkfontdir command.

fonts.alias This is a file you have to edit yourself. It maps each font ID to
an alias. With this alias name you can specify a font for an X
client on this server. An alias is the logical name for a font.
You can set several fonts for one physical font. This is useful
when a client asks for a font that is not implemented on your
server, and you select the font which is the closest to the one
requested and give it the alias name of the requested font.

122 X Window System Guide

4.1.4.1 Utilities for Customization
There are some very useful clients which you can use in conjunction with the
font customization.

xlsfonts lists all font IDs of the fonts that you have installed on your
workstation.

xfd displays the printable character of a font.

mkfontdir is used when you install new fonts on your X server. It creates a new
version of fonts.dir.

xfontsel is a client you can use when you have to extract a font from the XLFD
description. xfontsel will give you the font name.

showsnf prints the contents of a .snf font file.

xset sets option for the X server.

There may be some font resources in your .Xdefaults file for customizing the
default fonts for specific X clients.

4.1.4.2 ISO Codesets for Fonts
The standard MIT fonts use the ISO 8859 code set, whereas IBM′s default code
set for the RISC System/6000 is 850. AIXwindows Environment/6000 is delivered
with both the IBM PC 850 codeset and the ISO 8859 codeset. You should migrate
to the ISO codeset when you are working in a heterogeneous X Window System
environment.

4.1.4.3 Installing Fonts or Updating fonts.dir
Perform the following steps:

 1. Copy the fonts file in the appropriate directory (.snf, .bdf, compressed file):

mkfontdir <directory>

Note: mkfontdir decompresses and converts the files into .snf format.

 2. Edit the fonts.alias file (optional).

 3. If you have created a new directory, run:

xset +fp <directory>
xset fp rehash

4.1.5 Remapping the Keyboard Under AIX/6000
AIXwindows provides the X client xmodmap for mapping a keyboard. xmodmap
is used when AIXwindows Environment/6000 is active and a user wants to initiate
a change in the keyboard mapping. The keymaps are set during the execution
of the xinitrc shell script by using the xmodmap command. For every window
you start, the current definition of the keyboard map will be active.

It is possible to change the keyboard mapping dynamically. You can set another
keymap for a new window on your display. Every time you invoke the xmodmap
command on your server the changes will take effect for the new X clients that
you will start.

Chapter 4. Customizing the X Server 123

There are several keymap files included in AIXwindows Environment/6000. The
default language keymap files are located in the directory
/usr/lpp/X11/defaults/xmodmap/$LANG. The $LANG environment variable has
two styles:

Xx.XX This means the IBM PC 850 code page

xx.XX This represents the ISO 8859 code page

The codeset of your keyboard and the fonts you are using within a client should
be the same. The keyboard.alt file defines the RT PC (IBM 6150) keyboard.

To change your keymap on your display, enter the command:

xmodmap /usr/lpp/X11/defaults/xmodmap/<LANG>/keyboard

at the command line of an X client on your display. The next X client you start
will use the new keymap; however, the old X clients use the previously defined
keymap. In this way you can have several keymaps on your display.

Note: <LANG > means the language environment that you want to use.

Customizing your own keymap file: There are different ways to change the
keymaps. The easiest way to customize your own keymap file is by copying an
existing file and changing the entries. Let us have a closer look at an example
of a keymap file.

First, we need to know the following expressions:

Keycode The assignment of a number to a physical key.

Keysym Standard symbolic encoding for the symbols engraved on keyboard
keys.

Modifier These are logical key names which can be assigned to keysyms. X
Windows defines eight modifiers: Shift, Ctrl, Lock, Mod1, Mod2, Mod3,
Mod4, Mod5. They are called modifier keys, because they modify the
action of other keys. When users press the modifier key Shift which
is assigned to the Shift key, and press the keycode for a character,
they get a capital character.

The X Window System was designed as a device-independent system. With this
design the X Window System is not concerned with the layout of the keyboard.
Every application should be able (with the right keymaps) to understand the keys
pressed by the user. To support all the different keyboards, there are three
translation processes.

Pressing a key on the keyboard generates a keycode. This keycode is unique to
the appropriate key. The workstation generates a keycode event and reports
this to the application. Keycodes are numbers in the range from 8 to 255. The
application translates the keycode into a keysym where the application knows if
the user presses the Shift key or another modifier at the same time. The third
step is the translation from the keysym into a string.

The keyboard file has the following syntax:

! keycode xxx = keysym0 keysym1 keysym2

124 X Window System Guide

where:

! Comments the line

xxx Value from 8 - 255

keysym0 Keysym without any modifier

keysym1 Keysym with modifier Shift pressed

keysym2 Keysym with modifier AltGr (right Alt key on keyboard)

Note: Some keycode lines are commented out. These are keycodes which are
the same on every IBM keyboard available. However, you can change these
keysyms assigned to those keycodes (change the keysym and delete the !).

The list of the defined keysyms is defined in the /usr/include/X11/keysymdef.h
file.

To see the definitions of your keyboard (keycode and assigned keysyms) you can
use the xev command. This is an X client which is delivered in source form.
Enter xev at the command prompt of an aixterm. A new window appears on the
display. Activate the window and press any keys. On the aixterm you see the
information which shows which keycode you pressed and the keysym assigned
to the keycode. With this client you can verify if all keycodes are recognized and
to which character or string they are translated.

To change the keymap, edit either the keyboard file and run xmodmap, or make
your change at the command prompt.

4.1.6 Controlling X Client Access to AIX/6000
The X Window System is designed to allow every client to connect to any server
in the network. To restrict the access to the server, AIXwindows
Environment/6000 provides two mechanisms to set or reset the host
authorization. The authorization is only host based. If you grant access to a
host, every user on this remote host can connect to your server and display a
window on your screen.

• One way to show, set, or reset the X server access is provided by the xhost
command. To invoke the command, the X server must be started. As xhost
is an X client, the command must be invoked locally on the host which runs
the X server. When you stop the X server the authorization information will
be lost.

• The other way is by manipulating the /etc/Xn.hosts file where n means the
server number (usually 0) on your X server system. You must have root
authority to change this file. Each entry in that file represents a host allowed
to connect to your server.

Note: When you create this file, if it doesn′ t exist, ensure that the file name
begins with an X. The file system in AIX/6000 is case sensitive and files
whose name begins with an x will never be accessed. Each time you start
the server this file is scanned and all hosts for which an entry exists are
allowed to connect to the server.

Chapter 4. Customizing the X Server 125

4.1.7 Interoperability
The key points for a successful connection establishment are:

A TCP/IP connection to the X server host.

The X server must be started.

The X client must be allowed to connect to the X server host.

There are a number of ways of establishing a connection to the client platform
and starting the X client application from the AIX/6000 X server. The user can
log in to a remote system, or he can execute a command via rexec or rsh to
start a client application on his or her display.

Table 15. How to Connect to a Client System

Connection Supported

AIX - AIX rlogin, telnet, rexec, rsh

AIX - VM tn3270, rexec

AIX - MVS tn3270

4.2 Customizing PMX
The core component of the OS/2 X Window System is the PMX window manager
and therefore we will know consider the customizing of PMX.

4.2.1 Using the Configuration Notebook Program to Configure PMX
This section explains how to configure PMX using the configuration notebook or
the PMX configuration option. It also directs you to the information you need to
configure PMX manually.

To access configuration information for PMX with the configuration notebook,
double-click with mouse button 1 on the TCP/IP Configuration icon in the TCP/IP
folder. To use the PMX configuration option, select the Configuration option from
the Commands pull-down menu. Then select Initial Settings.

Figure 69. Using the PMX Configuration Options

To save your changes, close the configuration notebook. If you used the X
Window System server configuration menu, some settings will take effect
immediately. If you used the configuration notebook, you must restart the X
Window System server for the changes to take effect.

The configuration panels you find in the configuration notebook and in PMX itself
are identical; the same parameters are affected.

126 X Window System Guide

Configuring PMX using the configuration menu or the configuration notebook is
more convenient than configuring it manually, which involves editing
configuration files and entering parameters.

Note: Many of the configuration options can be set at the X Window System
server, the Configuration notebook and the XINIT command lines. If you
set parameters in all places, the command line parameters will override
the options set in the configuration notebook or PMX Configuration option.

4.2.2 Keyboard Definition
Figure 70 shows the Keyboard Options window. Use this page to specify what
keyboard you are using.

Figure 70. Keyboard Options

Selecting the 101 key option sets the keyboard type to a 101-key keyboard. Most
USA Keyboards have 101 keys. Most European keyboards have 102 keys.

Use the language field to select the setting for PMX. This setting will be used by
XINIT.CMD at startup to configure the language for your keyboard.

PMX provides support for non-USA keyboards. You can define your country ′s
keyboard specifications. PMX uses the XMODMAP utility to set up your
keyboard language.

A simple way to use the new keyboard feature:

Define a new environment variable called LANG, with the appropriate language
as its value (see the example in the Table 16). If it is not defined, the En_US
keyboard is assumed.

Table 16 (Page 1 of 2). X Window Utilities

Language Keyboard

Belgian nl_BE

Belgian French fr_BE

Canadian French fr_CA

Chapter 4. Customizing the X Server 127

The table shows the national language keyboard definitions that are distributed.
The keyboard definitions shipped with the PMX kit are copied unchanged from
RS/6000 AIX. For example, if you want the German keyboard definitions
definitions, you could add the following line to your CONFIG.SYS file:

 set LAN=de_DE

Table 16 (Page 2 of 2). X Window Utilities

Language Keyboard

Danish da_DK

Dutch nl_NL

Finnish fi_FI

French fr_FR

German de_DE

Greek el_GR

Icelandic is_IS

Italian it_IT

Japanese ja_JP

Japanese English en_JP

Latin American Spanish es_LA

Norwegian no_NO

Portuguese pt_PT

Spanish es_ES

Swedish sv_SV

Swiss French fr_CH

Swiss German de_CH

Turkish tr_TR

United Kingdom en_GB

United States en_US

4.2.2.1 Remapping the Keyboard under OS/2
Use the following example as a guide to altering the keyboard mapping for the
OS/2 X server.

 1. You can use the PMX utility XMODMAP to find out the current keyboard
settings on your OS/2 X server. Issue the following command from an OS/2
command prompt:

XMODMAP -pk | more

Figure 71 on page 129 shows the output of the XMODMAP command.

128 X Window System Guide

Figure 71. Issuing the XMODMAP -pk Command

Each physical key has an assigned keycode. For example the Enter key has
a keycode of decimal 51. The key function is identified by the keysym.
Notice that in Figure 71 the keysym supplied for keycode 51 is Return.

 2. In order to change the keysym of keycode 51 from Return to Execute you
need to create an input file for the XMODMAP command. We created a file
called MAP which had a one-line entry as illustrated in Figure 72.

keycode 51 = Execute

Figure 72. An Input File for XMODMAP

 3. Issue the following command from the OS/2 command prompt:

XMODMAP MAP

 4. Issue the following command again to check that the keysym for keycode 51
has in fact changed to Execute:

XMODMAP -pk | more

In Figure 73 on page 130 you can see that keycode 51 has in fact been
changed to EXECUTE.

Chapter 4. Customizing the X Server 129

Figure 73. Issuing the XMODMAP -pk Command with Keycode 51 Set to EXECUTE

To satisfy the requirements of the different countries we recommend the
following solution:

 1. Add the entry:

SET LANG=XX_XX

in your CONFIG.SYS file. The variable XX_XX means the country you want to
specify for your keyboard layout. We used SET LANG=GR_SW. For each
country-specific keyboard there is a directory
X11\DEFAULTS\XMODMAP\XX_XX, which contains the keyboard file.

 2. Start the PMX server by invoking the BIN\XINIT.CMD command. Make sure
that you have rebooted the system after adding the language entry in the
CONFIG.SYS file.

To start some X clients each time you start the PMX server, add the following
entry at the bottom of the BIN\XINIT.CMD command file:

rexec RS60001 -l stephan -p stephan aixterm -display PAULB:0 -fn rom11 &

where PAULB is the PMX server ′s host name.

On this X client we used the Swiss German keyboard layout.

If you want to change the keyboard layout you can do it at any time (after you
have started PMX), but these changes only take effect for the clients you will
start after these specific changes. One exception is when you change the button
codes of your pointing device. To reverse the button codes that get generated
so that the primary button is pressed using the index finger of the left hand can
be done on a three-button pointer as follows:

 1. Show the current pointer map with the command:

130 X Window System Guide

xmodmap -pp

 2. Enter the command:

xmodmap -e ″pointer = 3 2 1″

 3. Show the current pointer map with the command:

xmodmap -pp

4.2.3 Window Control

Figure 74. Window Controls

Figure 74 shows the Window Controls page. Use this page to specify what user
actions should give X Window System client applications focus or raise these
applications to the top.

• Focus Control.

Selecting the Click in window for focus option tells the server to transfer
focus from one client window to another only by clicking in the window. This
is the normal behavior for Presentation Manager windows and is the default
behavior for the server.

If you select the Move pointer into client area for focus option it is not
necessary to click on a client window; moving the pointer is sufficient.

• Raise Control

With Raise Control you can determine whether you can raise the window by
clicking on the frame or by clicking either on the frame or the application
area. The last behavior is usual for Presentation Manager.

You can also define these user actions manually. For more information about the
following parameters refer to X Window System Server Guide, Chapter 2.

• explicitfocus

Chapter 4. Customizing the X Server 131

• implicitfocus

• clickclienttoraise

• clickframetoraise

4.2.4 Controlling X Client Access to OS/2
In order for an X client application on a remote platform to display its output at
the OS/2 X server, the remote host must be authorized at the OS/2 X server.
There are three ways to provide this authorization:

 1. Edit the file C:\TCPIP\ETC\X0HOSTS directly to add host authorization entries
(assuming that you have installed the X Window System using the default
path). An example of an entry for a AIX host called RS60007 is illustrated in
Figure 75.

RS60007

Figure 75. An Example Entry in C:\TCPIP\ETC\X0HOSTS

There needs to be an entry for the host name in the file
C:\TCPIP\ETC\HOSTS, in order to resolve a host name, such as RS60007, into
a valid IP address. An example entry for RS60007 in C:\TCPIP\ETC\HOSTS is
illustrated in Figure 76.

9.67.38.75 RS60007

Figure 76. An Example Entry in C:\TCPIP\ETC\HOSTS

 2. Use the configuration notebook utility or PMX configuration option to add
entries to C:\TCPIP\ETC\X0HOSTS.

Figure 77. X Host Authorization

On the X Hosts Authorization window, shown in Figure 77, you can define
which TCP/IP hosts are allowed to use the X Window System server to
display applications. The names are stored in the X0hosts file. Use only

132 X Window System Guide

nicknames, which can be resolved either through a Domain Name Server or
the local etc\hosts file, no IP addresses.

 3. Use the provided X utility XHOST. Examples of using XHOST follow:

a. To allow all X client platforms to access the X server enter:

XHOST +

This turns the access control off.

b. To only allow those X client platforms listed in C:\TCPIP\ETC\X0HOSTS to
access the X server enter:

XHOST -

 c. To authorize a particular host to access the X server enter:

XHOST + hostname

where hostname corresponds to an entry in C:\TCPIP\ETC\HOSTS and
can be resolved into a valid IP address.

d. To refuse access to a particular host enter:

XHOST - hostname

where hostname corresponds to an entry in C:\TCPIP\ETC\HOSTS and
can be resolved into a valid IP address.

Note that XHOST authorization is only valid while PMX is active. XHOST
provides for dynamically changing authorization while PMX is active. All
XHOST authorization is lost when PMX is stopped and restarted.
Authorization provided by C:\TCPIP\ETC\X0HOSTS, however, is permanent.

4.2.5 Cursor Options

Figure 78. Cursor Options

Chapter 4. Customizing the X Server 133

In the Cursor Options window shown in Figure 78 you define the setting for your
cursor. You can change size or color. The Presentation Manager cursor is
limited to default size. For information on defining the cursor manually, see the
following parameters in Chapter 2 of the X Window System Server Guide:

• lc

• pmcursor

• colorcursor

• bwcursor

• reversecolorcursor

• reversebwcursor

• fc

4.2.6 Customizing OS/2 Colors

Figure 79. Color Options

Figure 79 shows the Color page. Use this page to define how PMX manages
colors in X Window System client applications. You can choose what kind of
colors are used (static, pseudo or palette manager).

PMX supports the following visual classes:

StaticColor The content of the StaticColor table cannot be changed. There
is only one such table available, and it contains the colors that
are contained in the default physical color table of the display.
If the screen is VGA it has 16 colors. If the screen is 8514/A,
XGA, SVGA or Image Adapter it has 256 colors. If the X client
application asks for a color that is not defined in the colormap,

134 X Window System Guide

PMX will substitute the closest matching color. The physical
color table is unchanged.

PseudoColor This type is supported for the 8514/A, XGA, SVGA and Image
Adapter. For this type of colormap, the X client can allocate
colors in the shared default PseudoColor table until it has no
more room for colors, or the X client can create new private
PseudoColor colormaps whose contents the application may
control.

Note: At the time of writing, the latest PMX CSD (UN60006) implements
Pseudocolor in two different ways. The first, and original, way uses PM
Realizable Color tables. The second, and new, way uses the PM Palette
Manager. By using the PM Palette Manager, PMX causes much less
color corruption to other PM application windows. Please see the online
documentation and the help items on the Color Options notebook page for
more details on choosing between these two PseudoColor
implementations.

It is unusual for Presentation Manager applications to modify physical colors on
the screen. It is much more common for X applications to do so. PMX attempts
to strike a balance between these two contrary behaviors. Some X applications
attempt to allocate private colorcells or create private PseudoColor colormaps
tables, without checking whether this is supported. As a result, a variety of error
messages are generated from the application. If you encounter this situation and
your machine has a display adapter for which PM supports Realizable Color
Tables or Palette Manager, you may be able to run the application after starting
PMX with the -pseudocolor or -palettemgr command line option. For more
information on the colormap support see the help function in the configuration
panel. For information on defining colormap behavior from the command line,
see the following parameters in Chapter 2 of the X Window System Server Guide:

• staticcolor

• pseudocolor

• palettemgr

• co

The color name database under OS/2 is found in the file C:\TCPIP\X11\RGB.TXT
(assuming that you have installed X Windows using the default path). The format
of this file is illustrated by the example entries in Figure 80 on page 136.

Chapter 4. Customizing the X Server 135

Figure 80. Example of the Contents of C:\TCPIP\X11\RGB.TXT

Each entry represents a red-green-blue (RGB) value that is associated with a
color name. This file is read into memory when the OS/2 window manager PMX
is started and is kept sorted by color name. Based on that information PMX may
add PseudoColor as a second type of visual that is available.

The RGB.TXT file does not represent the color table. The RGB.TXT file is the
color database. In that file you will find color names and the associated RGB
values. When an application requests the X server to load a cell of the color
table with a new color, the color name is translated to the appropriate RGB
value stored in the RGB.TXT file.

There is a difference between the color database in OS/2 and in AIX. Within an
AIX environment the RGB.TXT file is used as input for a small database. There
is no need to recompile the color database in OS/2.

It is possible to customize the color map by editing RGB.TXT and either
changing RGB values associated with a particular color name or adding new
color names and RGB values to create new color entries. The following are
examples that can be used as a guide to changing or adding to the PMX
colormap.

4.2.6.1 Changing a Color
In the following scenario we set the colors for the X client application in an
application resource file at the VM host. We then modified the RBG.TXT
colormap at the OS/2 X server to change the colors at our workstation.

 1. We coded the VM application resource file X DISPLAY as illustrated in
Figure 30 on page 62 so that we knew exactly which colors were being
specified from the client.

XClock*hands: red
XClock*foreground: white
XClock*background: blue

Figure 81. Example of X Display under VM to Set Colors for XCLOCK

136 X Window System Guide

 2. After having identified our OS/2 X server as the target display, we started
XCLOCK from the CMS prompt. An X window appeared at the OS/2 server
displaying a clock with a blue background, white second marks, and red
hands. Remember that these colors are specified by the X client.

 3. As a user at an OS/2 X server, you have the ability to change the colors that
are specified by the X client. This is done by editing the RBG.TXT file and
changing the RGB value associated with the color name specified by the
client application.

We changed our red, white, and blue clock into a green and gold clock by
making the changes as illustrated in Figure 82.

RGB values for red, blue and white clock:

0 0 255 blue
255 0 0 red
255 255 255 white

RGB values for green and gold clock:

0 255 0 blue
255 215 0 red
255 215 0 white

Figure 82. Changing RGB.TXT

Note that the color name blue now has the same RGB value as green, and
red and white have the same color value as gold. So the names blue and
red are only keywords; they themselves don′ t define the color. The colors
displayed on the window depends from the RGB values.

 4. These changes were implemented by the following steps:

a. Closing down the XCLOCK window.
b. Editing RGB.TXT to make the changes as illustrated in Figure 82.

 c. Stopping PMX.
d. Starting PMX which forces a load of the new colormap with our changes

for red, white and blue.
e. Starting XCLOCK from the CMS command line.

 5. An X window then appeared at the OS/2 server displaying a clock with a
green face on a gold background.

4.2.6.2 Adding a New Color
There may be situations where an X client application specifies a color name
that is not in the OS/2 colormap. When this happens it is possible to add a color
name with associated RGB values so that the user is able to have the desired
color displayed at the OS/2 workstation.

For example, consider the MVS application resource file userid.X.DEFAULTS in
Figure 83 that specifies the colors deepsea and sunset for the X client
application XLOGO.

XLogo*foreground: deepsea
XLogo*background: sunset

Figure 83. Example of userid.X.DEFAULTS under MVS to Set Colors for XLOGO

Chapter 4. Customizing the X Server 137

If you look in RGB.TXT on your OS/2 machine you will not find RGB values
specified for deepsea and sunset. Let ′s assume that we want to see blue at the
OS/2 workstation whenever deepsea is specified and red for sunset. Use the
following steps as a guide to adding new colors to RGB.TXT:

 1. After having identified our OS/2 X server as the target display, we started
XLOGO from the TSO prompt. An X window appeared at the OS/2 server
displaying a default black X with a white background. This is because the
colors deepsea and sunset could not be found in RGB.TXT.

 2. We edited RGB.TXT to add two new entries as illustrated in Figure 84.

0 0 255 deepsea
255 0 0 sunset

Figure 84. Adding New Colors to RGB.TXT

 3. We stopped and then restarted PMX to force a load of the new colormap with
our new colors deepsea and sunset.

 4. We then invoked XLOGO again, which opened a window at the X server
which displayed a blue (deepsea) X on a red (sunset) background.

In the directory D:\tcpip\X11 you can find alternative RGB databases:

• OLD-RGB.TXT

The version that was shipped in previous releases; this was originally
″tuned″ for the Digital VT240 series terminals.

• RAVELING.TXT

Lots of new colors, tuned by Paul Raveling at ISI for the HP monitor; see
below.

• thomas.txt

A version of the older database that was tuned by John Thomas at Tektronix
to match a box of Crayola crayons; see below.

The authors of the color databases made some comments about these colors:
read the readme.rgbin for more detailed descriptions of the colors.

4.2.7 OS/2 X Fonts

138 X Window System Guide

Figure 85. Fonts Option

Figure 85 shows the Fonts Options window. Use this window to specify the
directory containing the fonts you want PMX to use in X Window System client
applications. PMX searches for the FONTS.DIR and FONTS.ALI in each directory
in the font path. These files map font names to the font names in that directory.
Use the LOG fonts option to trace the font request made by X applications.

To define fonts manually use the following parameters, which are documented in
Chapter 2 of the X Window System Server Guide.

• fp

• fn

The OS/2 X Window System is supplied with numerous X fonts, including fonts
supplied from the MIT X11R5 X Window System and those from the IBM
AIXwindows Environment/6000 product.

Each font is contained in a file with the extension PCF. They are located by
default in the subdirectories C:\TCPIP\X11\MISC and C:\TCPIP\X11\75DPI
(assuming that you have installed the X Window System using the default path).
In our test environment they are in the directory D:\TCPIP\X11\MISC and
D:\TCPIP\75DPI. You can change these subdirectories or add additional font
libraries using the -fp option when invoking PMX.

An X client application specifies one or more fonts when sending a request to
PMX to display output. This request may come in the form of a full font name or
an accepted alias. For example, an X client application may request the font
-misc-fixed-medium-r-semicondensed--12-110-75-75-c-60-iso8859-1. PMX accepts
this X font name and if possible resolves it to the name of one of the font files.
This is done through using a file called FONTS.DIR which contains the PMX font
file name and the full font name. There must be a FONTS.DIR file in each
subdirectory that PMX uses as a fonts library. An example of some of the
entries in FONTS.DIR is illustrated in Figure 86 on page 140.

Chapter 4. Customizing the X Server 139

Figure 86. Example of the Contents of D:\TCPIP\X11\MISC\FONTS.DIR

Notice that the font
-misc-fixed-medium-r-semicondensed--12-110-75-75-c-60-iso8859-1 maps onto the
file 6X12.PCF.

Note:

The SNF fonts used in Version 1.2 are no longer valid. Version 2.0 is using
PCF fonts. The background is the change from X11R4 to X11R5: in X11R4
the SNF (Server Normal Fonts) fonts have been used while X11R5 has
switched to PCF (Portable Compiled Font). The advantage of PCF fonts
compared to SNF fonts is the capability to transfer compiled font files,
which eliminates compile action on each X Window server and gives the
capability of using a font server.

Sources from fonts are usually in BDF format (Bitmap Distribution
Format), if you want to use fonts which are not already on you local
X-Window server you can either get those BDF Files via FTP and compile
them with the bdftopcf utility or use a font server. Both methods are
described in the next chapters.

An X client application may use an alias to request a font. For example, an
application may request the font 6x12. PMX uses the file called FONTS.ALI to
map the alias on to a full font name which is then mapped onto a PMX font file
name using FONTS.DIR. The file FONTS.ALI needs to be in at least one of the
font subdirectories accessed by PMX but it is not necessary to have a FONTS.ALI
in each subdirectory. An example of some of the entries in FONTS.ALI is
illustrated in Figure 87 on page 141.

140 X Window System Guide

Figure 87. Example of the Contents of D:\TCPIP\X11\MISC\FONTS.ALI

Notice that the alias 6x12 corresponds to the font
-misc-fixed-medium-r-semicondensed--12-110-75-75-c-60-iso8859-1.

It is through using FONTS.DIR and FONTS.ALI that PMX is able to use OS/2 file
structures and names for font libraries while still complying with X Window
System naming conventions for X fonts.

Each font file (for example, 6X12.PCF) contains object code. PMX provides a
utility that allows you to look at the contents of a font file. This utility is called
XFD and can be invoked from the OS/2 command prompt as follows:

OS2 D:\>xfd -display itso51:0 -bf courr18 -geometry 400x400 -v courr24

The XFD utility creates a window in which the characters of a font are displayed.
In Figure 88 on page 142 you can see the result of the above command.

Chapter 4. Customizing the X Server 141

Figure 88. Examining courr24.PCF Using PMX Util ity XDF

The XFD utility displays the font named courr24. You can use any font which is in
a file available in the XPATH. The first character displayed at the top left is the
character number of 0.

All characters in the font might not fit in the window of characters. Clicking
mouse button 2 on the window displays the next window of characters. Clicking
mouse button 1 on the window displays the previous window of characters.

Clicking buttons 1 and 2 simultaneously (or the middle button if available) on a
character displays the character′s number in both decimal and hexadecimal at
the bottom of the window. When you select verbose mode (-v option) additional
information about particular characters appears. This information includes its
width, left bearing, right bearing, ascent and descent.

The option -bf fontname (here courr18) specifies the font for messages at the
bottom of the window.

4.2.7.1 Adding New Fonts
The OS/2 X Window System provides the ability to add new fonts as required.
You would use this facility when the OS/2 X Window System did not support a
particular font that was required for a particular application. If this was the case
you would need to obtain the source of a font from another X server platform
and then compile it for PMX. Usually X font source files have the file extension
BDF.

We acquired the source of the X font
-ibm--medium-i-medium--20-14-100-100-m-90-ibm-pc850, which has the alias ITL14
and as a source file has the name ITL14.BDF. Although PMX provides this font,
we used the source to test out compiling a font under OS/2.

Use the following as a guide to compiling a font for the OS/2 X Window System.

 1. Copy the font source file into an OS/2 subdirectory. We created the directory
D:\TCPIP\X11\TESTFONT into which we copied ITL14.BDF.

 2. Change to the directory D:\TCPIP\X11\TESTFONT.

 3. Use the OS/2 X Window system utility BDFTOPCF to compile the font source.
Issue the following command from the OS/2 command prompt:

142 X Window System Guide

BDFTOPCF ITL14.BDF -o ITL14.PCF

 4. You must now create the file FONTS.DIR to enable PMX to map the
requested font name onto the font file. To do this use the PMX MKFONTDR
utility as follows:

MKFONTDR D:\TCPIP\X11\TESTFONT

Note: If you have the source BDF file and the PCF file in the same
subdirectory the MKFONTDR command fails. Move the source BDF
files into another subdirectory.

This will build a file called FONTS.DIR within the directory specified which is
the directory that holds the font that you have just compiled. The entry in
FONTS.DIR for ITL14.SNF as created by the MKFONTDR utility is shown in
Figure 89. MKFONTDR obtains the information to create the entry in
FONTS.DIR from the fonts file ITL14.PCF.

ITL14.SNF itl14

Figure 89. The Entry in FILES.DIR Created by MKFONTDR for ITL14.SNF

If we had compiled ITL14.SNF into a directory that already had a FONTS.DIR
then MKFONTDR would have simply updated FONTS.DIR by adding an entry
for ITL14.SNF.

 5. Add the new font to the fontpath dynamically with the command XSET:

XSET fp D:\TCPIP\X11\MISC,D:\TCPIP\X11\75DPI,D:\TCPIP\X11\TESTFONT

 6. Update the fontpath in the TCP/IP Configuration Notebook or PMX
Configuration utility for permanent update.

Note: At the time of writing, the latest PMX CSD (UN60006) contains a handy
ALLFONTS.CMD Rexx utility that will compile all the .BDF font files in the
current directory into .PCF format and then will run MKFONTDR to update
the FONTS.DIR file. Just enter allfonts in a directory containing
downloaded .BDF files.

4.2.7.2 Using a Font Server
The font server (fs) program acts as an intermediary between your X server and
the fonts resident on the system where the font server is running. If you want to
use fonts which are not on your system you can either port them (as previously
described) or use a font server which provides those fonts. If a font desired by
an application is not available on the PMX server you receive the following
message:

OS2 C:\>xfd -geometry 800x500 -bf courr12 -v xtrek
xfd: error: Unable to open font xtrek!

To build up a font server on an AIX system and use it with PMX, follow these
steps:

 1. Set up the config data set on the AIX system. This is a sample which resides
in the subdirectory /usr/lib/X11/fs:

Chapter 4. Customizing the X Server 143

� �
@(#)29 1.3 com/XTOP/fonts/server/config.cpp, xfont,
r5gos325, 9325325 5/26/93 11:25:42
#
COMPONENT_NAME:
#
FUNCTIONS:
#
ORIGINS: 16,27
#
(C) COPYRIGHT International Business Machines Corp. 1992, 1993
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
#
font server configuration file

clone-self = on
use-syslog = off

catalogue = /usr/lib/X11/fonts/,/usr/lib/X11/fonts/misc/,
/usr/lib/X11/fonts/JP/,/usr/lib/X11/fonts/75dpi/,
/usr/lib/X11/fonts/100dpi/,
/usr/lib/X11/fonts/Type1/,/usr/lib/X11/fonts/Speedo/,
/usr/lib/X11/fonts/i18n/,/usr/lib/X11/fonts/oldx11/,
/usr/lib/X11/fonts/oldx10/,
/usr/lib/X11/fonts/bmug/,/usr/lib/X11/fonts/info-mac/

error-file = /usr/lib/X11/fs/fs-errors

in decipoints
default-point-size = 120
default-resolutions = 75,75,100,100

This is normally 7000 but it is not a requirement. It is actually the
first free port available.
port = 7500� �

Figure 90. Config Data Set of AIX Font Server

 2. To start the font server issue the command fs &

 3. Add the font server to your local font path:

PMX can access one or more font servers. Everywhere a directory can be
specified in a font path, you can specify a font server instead. The font server
specification has the form :tcp/hostname:portnumber. For example, the
following command points to an AIX font server:

OS2 C:\>xset fp+ tcp/rs60001:7500

 Remark!

Usually the port number for the font server is documented as 7000; AIX
uses 7500!

144 X Window System Guide

 4. Check whether the font server definitions have been added with the XSET
q(uery) command:

� �
OS2 C:\>xset q
Keyboard Control:
auto repeat: on key click percent: 0 LED mask: 00000000
auto repeating keys: 00ffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

bell percent: 50 bell pitch: 400 bell duration: 100
Pointer Control:
 acceleration: 2/1 threshold: 4
Screen Saver:
 prefer blanking: yes allow exposures: yes
 timeout: 600 cycle: 600
Colors:
 default colormap: 0x21 BlackPixel: 0 WhitePixel: 255
Font Path:
 d:/tcpip/x11/misc,d:/tcpip/x11/75dpi,tcp/rs60001:7500� �

Figure 91. Xset Command

Note that the font server specifications have been added to the font path.

 5. Restart the application:

OS2 C:\>xfd -geometry 800x500 -bf courr12 -v xtrek

The result is shown in Figure 92.

Figure 92. XFD Output

Note:

To check if a specific font is available on a X Window server (here PMX);
use the xlsfonts utility. If the font is available its name is echoed. You can
also use patterns such as courr* to check fontnames.

Chapter 4. Customizing the X Server 145

� �
OS2 C:\>xlsfonts -display itso51:0 -fn xtrek
xtrek� �

Figure 93. Xlsfonts Util i ty

4.2.8 Using the PM Clipboard with PMX
Figure 94 shows the Cut/Paste page. Use this page to specify how to manage
cut and paste operations. Cutting and pasting is a convenient way for users to
transfer data between X Window System client applications, Presentation
Manager, and Win-OS/2 applications.

Figure 94. Cut and Paste

OS/2′s Presentation Manager and the X Window System both provide a way to
share data among applications using cutting, copying, and pasting. The two
systems handle these operations differently, however. PMX provides facilities for
sharing data between applications running under PM and those running as
clients of PMX.

The options are described in detail in the X Window System Server Guide. An
example of how to use the cut buffer is described here:

4.2.8.1 Cut Buffer within PMX
When the user copies or cuts data from an X Window System client application,
the application transfers the data to the cut buffer and has no further
responsibility for the data. When the user pastes the data into another X Window
System client application, that application gets the data from the cut buffer.

PMX, itself, always treats cut and paste data this way. PMX Window System
always cuts data from an X Window System client into CUT_BUFFER0. Any
subsequent cut operations overlay the previous cut, with the cut data always
going into CUT_BUFFER0. PMX Window System always pastes data to an X
Window System client from CUT_BUFFER0. Any subsequent paste operations
continue to get the same data from CUT_BUFFER0 until the data is changed by a
subsequent cut.

146 X Window System Guide

To use the cut buffers as a means of cutting and pasting between X and OS/2
applications, select the cut buffers (text only) option from the PMX configuration
notebook (Figure 94). Then close the notebook and select Apply or Save and
Apply to apply the setting to PMX. Now start the text-related applications in X,
PM, and WIN-OS/2 environments. To see which X Window System clients support
cut-and-paste operations using cut buffers, check the manual pages for the client
of interest. Two clients that use this method are XTERM and XEDIT. You can
simply cut and paste among all three types of applications assuming the clients
support it. Using XTERM, for example, you can use mouse button 1 to select the
desired text part. See Figure 95 for an example.

Figure 95. Cut in XEDIT Application

Next go to any other X, PM, or WIN-OS/2 application (here we used the PM
enhanced editor). We used the paste function to paste the contents of
CUT_BUFFER0 to the application. The result is shown in Figure 96 on page 148.

Chapter 4. Customizing the X Server 147

Figure 96. PASTE in PM Enhanced Editor

4.2.9 Other Options

Figure 97. Other Options

Figure 97 shows the Other Options page. Use this page to define mouse options
and other miscellaneous options defining the way PMX operates.

If the Cascade application windows option is selected, windows that are not
initially positioned by user specifications will be cascaded down the screen.

Use Permit old bugs to permit certain old broken clients to function properly.
Examples of clients that will be affected by this setting are X11R2 and R3
versions of XTERM.

The installed shape extension allows non-rectangular windows to be created by
clients. This function is needed if you plan to display NV/6000 on the OS/2. For

148 X Window System Guide

information on defining these options manually, see the following parameters in
X Window System Server Guide:

• nocopyright

• nocascade

• logpath

4.3 DOS
In DOS we used HCL-eXceed/W for Windows and HCL-eXceed/DOS for DOS
without Windows.

4.3.1 Customizing HCL-eXceed/W for Windows Version 3.3.3
The customizing of this X server implementation is very easy. Most of the
customization utilities can be started with an icon and there is help text
available. The customization programs are stored in the Xconfig/W program
group. We assume that you have already installed the program and that an X
client can connect to your server.

4.3.1.1 Customizing Colors
The color database information is stored in the drive:\installation\user\rgb.src
file. eXceed/W supports the PseudoColor, StaticGray, and StaticColor visuals.
You can modify the color database by using a program which is represented as
the COLOR icon in the Xconfig/W program group. By using this program you
can change and add items to the color database file.

You can change the colors either by changing the RGB values, or you can add a
color of your choice by setting the RGB values and adding a color name.

Figure 98. The RGB Database

Chapter 4. Customizing the X Server 149

The edit menu is shown in Figure 98.

When you have changed the color database, press the compile button to rebuild.
When you quit the customization save your changes. The SAVE item appears
when you press the left button on the Xconfig/W menu bar. You can activate
your changes without restarting your X server. This can be done by the
following:

• Click on your started HCL-eXceed/W icon.

• Select the following items:

Figure 99. Reload the RGB Database

4.3.1.2 X Fonts
The customizing of the font database differs from other X server
implementations. The information for the fonts (fonts.dir and fonts.ali paths) is
stored in one database. You can access the eXceed/W fontbase by the FONT
icon. You can compile fonts, manage aliases and customize the font directories.
This integrated program is a replacement for the clients mkfontdir, bdftopcf, xdf,
and xset -fp.

There is a log available that shows you useful information about the clients′
requests. When a client requests a font either with the alias name or with the
XLFD structure, and the server doesn′ t find an entry in its font database, an entry
with the error message will be added in the log file. This is an easy way to see
which alias you should add to your font database. An alias gives you the ability
to set several logical names for one physical font.

150 X Window System Guide

Figure 100. HCL-eXceed/W Font Database

On that window (see Figure 100), you can also call functions to display specific
fonts. After you call Resolve Font Name... and use the string courr12 as a
search pattern, the window in Figure 101 appears and lists the fonts.

Figure 101. HCL-eXceed/W Font List

To reload the font database without restarting the X server, click on the started
HCL-eXceed/W server icon and reload the database with the following menu:

 File ─�Reload ─� Database ─� Font

Chapter 4. Customizing the X Server 151

4.3.1.3 Remapping the Keyboard
There is no xmodmap client available. However, you can change the layout of
your keyboard. There are some country-specific keyboards available that you
can select, and you can change the layout of your keymap with an integrated
tool that is similar to the xmodmap command. But it is not possible to have
more than one keyboard mapping on your display at the same time, because the
X server reads the keyboard you defined at startup time.

When you work with aixterm you will see very soon that the keyboard mapping
does not correspond to the IBM PS/2 keyboard layout. When working with an
aixterm the Backspace key works only by pressing the Shift modifier, and it is
not possible to print any decimal number through the numeric keypad.

We changed the keyboard in the following way:

 1. Create a copy of the keyboard file in the drive:\installation\user directory.
We named it test.kbd.

 2. Start Windows with the command:

win xport

 3. Activate the INPUT icon in the Xconfig/W group and select your copy of the
keyboard file. Press the Edit button. The editor starts and you see the
configuration file of your keyboard.

 4. We made the changes as illustrated in Figure 102.

compose NumLock+91 255.183 to compose Numlock+91 55
compose NumLock+92 255.180 to compose NumLock+92 52
compose NumLock+93 255.177 to compose NumLock+93 49
compose NumLock+96 255.184 to compose NumLock+96 56
compose NumLock+97 255.181 to compose NumLock+97 53
compose NumLock+98 255.178 to compose NumLock+98 50
compose NumLock+99 255.176 to compose NumLock+99 48
compose NumLock+101 255.185to compose NumLock+101 57
compose NumLock+102 255.182to compose NumLock+102 54
compose NumLock+103 255.179to compose NumLock+103 51
compose NumLock+104 255.174to compose NumLock+104 46
15 255.255 255.8 to 15 255.2 255.255

Figure 102. Changing the Keyboard Mapping for HCL-eXceed/W

 5. Save your changes with the editor title bar.

 6. Compile your keyboard database.

 7. Save your settings with the Xconfig/W title bar.

 8. Stop your X server.

 9. Restart your X server.

To modify or create a keyboard file, you will also require some or all of the
following information:

• The number of the PC key you want to define. You can find the number
associated with any physical key on your keyboard by running ShowKey from
the eXceed/W Program Group. You will be prompted to press any key.

152 X Window System Guide

• The number of the X keysym you want to keystroke to send. A keysym is a
key code that corresponds to a specific symbol supported by the X protocol.

Keysyms and their corresponding codes are listed in the file KEYSYMS.SYM
located in your \home\INFO directory.

4.3.1.4 Controlling X Client Access
When you start the X server after installation, every host is permitted to display
windows on your screen. To control the access of the hosts you can edit an
access file. Activate the ACCESS icon and edit the file. If there is no entry in
the file, every host is allowed to display a window on your server. Add the hosts
you want to allow access to (one host on each line), then save and compile the
file.

The eXceed/W icon allows you to dynamically reread the RGB, font, and access
databases. The changes will take effect at once and you don′ t have to restart
the X server. Only when you change the keyboard do you have to restart the
server.

4.3.2 Customizing HCL-eXceed/DOS for DOS
The customization of HCL-eXceed Plus is very easy and the configuration tool
provides help text. The configuration program is called xconfigp and it can be
invoked when the X server is running by pressing the Alt-Esc and then the Enter
keys. This key combination starts a DOS shell. To quit the DOS shell enter exit
at the command prompt.

4.3.2.1 Customizing Colors
The RGB database file is called drive:\install\source\rgb.src. It exists in a
source format and in a compiled version. The compiled version is the file
drive:\install\work\rgb.xdb. HCL-eXceed Plus uses the compiled version.

HCL-eXceed Plus supports three visual classes: PseudoColor, GrayScale, and
StaticColor. To change the color definition you can perform the following steps:

 1. Start with the xconfigp command.

 2. Press F6 (RGB database).

 3. The next screen is the definition file for the color database. You can edit this
either by changing an existing entry or by adding or deleting a line. The
syntax is as follows:

Red Green Blue [=colornumber] colorname

Red, Green, Blue must be a value between 0 and 255. The colornumber
option is used when the visual class is set to StaticColor. The colors with
this colornumber entry will be loaded into the colormap. colorname is the
name of the color which is used to indicate the color for an X client.

 4. Press F10 to compile the database (Compile/Exit).

 5. Press F10 to quit the customize menu (Compile/Save).

Note: To reload the RGB database while the server is running, press Alt-Esc
and then the letter R. See Table 7 on page 52.

Chapter 4. Customizing the X Server 153

4.3.2.2 X Fonts
The font customization can be started with the xconfigp command. Let′s have a
look at the font database:

 1. Start the xconfigp program.

 2. Select the font database with F8. Perform one of the following activities:

a. Add and delete font paths.

b. Search for specific fonts and display or edit them.

 c. Change the search order through the fontpaths by changing the in order.

To display or change a font or its characteristics press F7 (or Alt + F7) and
enter a search pattern (Font name or Alias). A list of all fonts, which include
this search pattern is listed. Now you can view the font or change font
definitions.

 3. By pressing F10 you will see the main menu and when you press the F10
(Exit/Save), you quit the customization.

Note: To reload the font database while the server is running, press Alt-Esc
and then the letter F.

4.3.2.3 Remapping the Keyboard
HCL-eXceed Plus offers several predefined keyboard files. They are stored in
the directory drive:\install\source directory. To select a new keyboard file or
change an existing one, execute the following:

 1. Start the xconfigp command at the command prompt. If you have already
started HCL-eXceed Plus, enter Alt-Esc, and then Esc again. This will end
your HCL-eXceed Plus session because you have to restart your X server
when you have made keyboard mapping changes.

 2. Select INPUT SETTINGS with F2.

 3. Choose a keyboard on the line KEYBOARD CLASS (Cursor left).

 4. Press F2 (Compile/Edit).

You can make the same changes as described in the customization of
HCL-eXceed/W for Windows.

 5. Press F10 (Compile/Exit).

 6. Press Esc (Main Menu) and then F10 (Exit/Save).

 7. To activate the changes you must restart the server with the exceedp
command.

4.3.2.4 Controlling X Client Access
The access file is called drive:\install\source\access.src. It exists in the source
format and in a compiled version. The compiled version is the file
drive:\install\work\access.xdb. HCL-eXceed Plus uses the compiled version. To
set the access permissions perform the following steps:

 1. Start the xconfigp program at the DOS command prompt.

 2. Press F7 (Access Database).

 3. Edit the file. If empty all hosts are allowed to connect to your server.

 4. Press F10 (Compile/Exit).

 5. Press F10 (Exit/Save).

154 X Window System Guide

Note: To reload the access database while the server is running, press Alt-Esc
and then the letter H.

Chapter 4. Customizing the X Server 155

156 X Window System Guide

Chapter 5. Multivendor Interoperability

One of the key advantages of the X Window System is that it is device and
vendor independent. X client applications can run on one platform and use a
remote system as the X server to display output. As long as that remote system
complies with the X Window System standards, it should not matter what the
hardware and operating system is on the X server.

We had an HP 9000 Model 340 running HP-UX** Release 6.5 available at the ITSO
Center in Raleigh with which we were able to demonstrate this fundamental
principle. Please refer to the network configuration in Figure 7 on page 25.

The following section describes X Window System interoperability between IBM
systems and the Hewlett-Packard** platform.

5.1 Hewlett-Packard
The Hewlett-Packard workstation with which we tested X Window System
interoperability was an HP 9000 Model 340 running HP-UX Release 6.5, which is
the Hewlett-Packard implementation of UNIX. The Hewlett-Packard X Window
System was at Version A.01.

The X Window System was installed as a component of the HP-UX operating
system.

5.1.1 Hewlett-Packard as a Client
We performed the following steps to start an X application on the HP 9000 and
use an OS/2 X server as the target display:

 1. We authorized the HP 9000 at the OS/2 X server by doing the following:

a. We added an entry in C:\TCPIP\ETC\HOSTS for the HP 9000 which has an
internet address of 9.67.32.66. We used the host name HPAIX. The entry
is illustrated in Figure 103.

9.67.32.66 HPAIX

Figure 103. The Entry in C:\TCPIP\ETC\HOSTS for the HP 9000

b. We issued the following command to add the HP 9000 to the X client
authorization file:

xhost + HPAIX

 2. We started the X Window System on the HP 9000 by issuing the following
command at the HP-UX prompt:

/usr/bin/x11start

Note that we have included the full directory path for the x11start command.
You can find the directory path for a file under HP-UX by issuing the
following command:

 Copyright IBM Corp. 1992, 1994 157

find / -name filename -print

where filename is the file that you wish to locate.

 3. We started the X client application hpterm and directed the output to our
OS/2 X server with the following command at the HP-UX prompt:

/usr/bin/X11/hpterm -display 9.67.38.89:0.0

Note that we have included the full directory path for the hpterm command.

This opened up an HP 9000 command window on the OS/2 X server at which
we could enter HP-UX commands as if we were a user at a local HP 9000
screen. An example of the window is illustrated in Figure 104. We did not
encounter any significant keyboard mapping problems that prevented
effective use of hpterm at the OS/2 X server.

Figure 104. An hpterm Window Displayed at an OS/2 X Server

5.1.1.1 Modifying Hewlett-Packard X Client Application Resources
If you look closely at the commands that we issued from the hpterm window
illustrated in Figure 104 you will notice that we actually started up a second X
client application called xload and displayed the output at our OS/2 X server.
xload displays a graphical picture of the HP 9000 system load. An example of
xload window at our OS/2 X server is illustrated in Figure 106 on page 159.

Notice too that we specified some runtime options that defined the values for two
xload application resources. In the command in Figure 104 we specified the
foreground color as red and the background color as green.

Another way to set application resources for X clients on the HP 9000 is through
the use of an application resource file. We did the following to set up an
application resource file for the xload program.

 1. We found a sample application resource file called /usr/lib/X11/sys.Xdefaults.
We copied this file to our home directory by issuing the following command:

158 X Window System Guide

cp /usr/lib/X11/sys.Xdefaults .Xdefaults

We now had an application resource file .Xdefaults in our home directory.

 2. In this file there are a number of sample resource definitions for several X
client applications available on the HP 9000. Note that they are all
commented out with an ! in the first column.

Using the vi editor, we added the lines as shown in Figure 105 for xload,
ensuring that we removed the ! from the first column.

XLoad*foreground: red
XLoad*background: green
XLoad*Font: 8x13
XLoad*geometry: 500x100+5+5

Figure 105. Sample HP 9000 Application Resource File Definitions for xload

 3. We started xload with the following command at an HP-UX command prompt:

/usr/bin/X11/xload -display 9.67.38.89:0.0&

The resulting window is illustrated in Figure 106. The area under the graph
is red and the background is green. The font used for the test is 8x13, which
is a font that is available on the OS/2 X server. The window has the
dimensions 500 pixels wide by 100 pixels high and is placed 5 pixels in the X
direction and 5 pixels in the Y direction from the upper left-hand corner of
the display.

Figure 106. An HP 9000 xload Window Displayed at an OS/2 X Server

In order to generate some load on the HP 9000 for the display illustrated in
Figure 106 we wrote a little program with an endless loop in it.

5.1.2 Hewlett-Packard as an X Server
We tested the HP 9000 as an X server by running some X client applications on
MVS and AIX/6000. Since the X client support on VM is virtually identical to that
of MVS, we have not documented a case for VM as the X client platform.

In order to use the HP 9000 as an X server we had to first authorize both the
MVS client and AIX/6000 client hosts. This was done as follows:

 1. We added the MVS host name MVS18, and the AIX host name RS60001 to the
HP 9000 X client authorization file /etc/X0.hosts using the vi editor. The
entries we added for MVS18 and RS60001 are shown in Figure 107 on
page 160.

Chapter 5. Mult ivendor Interoperabi l i ty 159

mvs18
rs60001

Figure 107. Entries in /etc/X0.hosts on the HP 9000

 2. In order to resolve the host names in /etc/X0.hosts to valid IP addresses we
had to put entries for MVS18 and RS60001 in the HP 9000 /etc/hosts file. We
did this using the vi editor. The entries are illustrated in Figure 108.

9.67.32.85 mvs18
9.67.38.135 rs60001

Figure 108. Entries in /etc/hosts on the HP 9000

5.1.2.1 MVS Client Application
The most common MVS X client applications that will be displayed on OEM
workstations will probably be GDDM applications. We chose ADMCHART to
display at the HP 9000.

We performed the following to open an X window for ADMCHART at the HP9000:

 1. We activated the X Window System GDDM interface on MVS18. Please refer
to 2.2.2.2, “Installation Verification” on page 29 for details on how to set up
and activate the X Window System GDDM interface for MVS.

 2. We changed the entry in the data set userid.XWINDOWS.DISPLAY to identify
the HP 9000 as the target display. Note that userid was the user ID of the
TSO user under which we started ADMCHART. Refer to 2.2.1, “Installation
Verification for the MVS X Window System API” on page 26 for further
information on the data set userid.XWINDOWS.DISPLAY. The entry is
illustrated in Figure 109.

9.67.32.66:0.0

Figure 109. Entry for the HP 9000 Target Display in userid.XWINDOWS.DISPLAY

 3. In order to interact with ADMCHART you need to use a key that has the
keysym set to EXECUTE. This is the key you would use when you normally
press Enter. On the HP 9000 there is a utility called xprkbd that shows the
relationship between keycodes and keysyms. We invoked xprkbd with the
following command on the HP 9000:

/usr/bin/X11/xprkbd | more

From the resulting output we were able to determine that the key with
keycode hexadecimal 57 was set to the keysym name EXECUTE.

 4. In order to determine which key on the HP 9000 keyboard corresponded to
keycode hexadecimal 57, we used the MVS X client application KEYCODE.
From the TSO command prompt we typed:

KEYCODE

160 X Window System Guide

Since we had earlier set the HP 9000 as the target display, the KEYCODE
window was opened at the HP 9000. An example of the KEYCODE window is
illustrated in Figure 44 on page 78. By using the KEYCODE display we were
able to determine which of the HP 9000 keys corresponded to keycode 57.

 5. We started up ADMCHART from the TSO command prompt and a GDDM
display window was opened at the HP 9000.

Remapping the HP 9000 Keyboard: The HP 9000 keyboard has only eight
program function keys. ADMCHART requires a keyboard with twelve program
function keys. This meant that we had to remap the HP 9000 keyboard to
provide the program function keys 9 to 12. We performed the following steps to
accomplish this task:

 1. We chose four keys on the HP 9000 keyboard that we were not using, and to
which we could map the keysym names F9, F10, F11, and F12. We used the
MVS X client application KEYCODE to determine the keycodes for our chosen
four HP 9000 keys. They had the keycodes hexadecimal 2D, 29, 2B, and 2F.

 2. We invoked the xprkbd util ity to check the current keysym settings for the
keycodes 2D, 29, 2B, and 2F. This was done with the following command:

/usr/bin/X11/xprkbd | more

 3. The xmodmap utility under HP-UX allows you to remap the HP 9000
keyboard. Using the vi editor we created an input file for xmodmap in our
home directory called gddmkeys. The contents of this file is illustrated in
Figure 110. We executed xmodmap using the following command:

/usr/bin/X11/xmodmap gddmkeys

Note: You must execute xprkbd and xmodmap from the display and
keyboard for which you want the keys remapped. Remember that the HP
9000 is a multi-user system and keeps a keyboard map for each keyboard.

keycode 0x2d = F9
keycode 0x29 = F10
keycode 0x2b = F11
keycode 0x2f = F12

Figure 110. Input File for HP 9000 xmodmap Util ity

 4. Using xprkbd, we confirmed that the keys with keycodes 2D, 29, 2B, and 2F
had actually been set to F9, F10, F11, and F12 respectively.

 5. We restarted ADMCHART from the TSO command prompt and a GDDM
display window was opened at the HP 9000. Once we had created mappings
for the function program keys 9 through 12 we found we had no further
problems using ADMCHART with the HP 9000 as the X server.

Chapter 5. Mult ivendor Interoperabi l i ty 161

5.1.2.2 AIX/6000 Client Application
A typical AIX X client application that will be displayed on OEM workstations
might be aixterm. We performed the following steps to open an X window for
aixterm at the HP 9000:

 1. From the HP 9000 we used Telnet to establish a session with the RISC
System/6000. This was done with by issuing the following command at the
HP 9000 command prompt:

telnet rs60001

We were then able to enter the AIX/6000 root user ID and password at the
AIX/6000 login prompt.

 2. At the AIX/6000 prompt we started the AIX X client application aixterm with
the following command:

aixterm -display 9.67.32.66:0.0

An aixterm X window was opened at the HP 9000. We were able to use this
window as if we were at the RISC System/6000 console.

162 X Window System Guide

Appendix A. MVS C/370 Catalogued Procedures

A.1 C/370 Compiler Catalogued Procedure EDCC
//**/
//* EDCC * */
//*********** C/370 -- MVS */
//* VERSION 2 RELEASE 1 MODIFICATION 0 */
//* */
//* 5688-187 (C) COPYRIGHT IBM CORP. 1988, 1991 */
//* */
//* */
//* EDCC --- THIS CATALOGUED PROCEDURE COMPILES */
//* A C PROGRAM */
//* */
//**/
//* */
//*USING THIS CATALOGUED PROCEDURE: */
//*-------------------------------- */
//* WHEN USING THIS CATALOGUED PROCEDURE, THE USER MUST */
//* SPECIFY THE QUALIFIED INPUT FILE NAME (SOURCE PROGRAM).*/
//* */
//* THE MINIMUM A USER CAN CODE TO INVOKE THIS PROCEDURE */
//* IS: */
//* */
//* //USERID JOB... */
//* //STEPNAME EXEC EDCC, */
//* INFILE=′ QUALIFIED DATA SET NAME′ */
//* DEFAULT VALUES WILL APPLY TO ALL REMAINING PARAMETERS. */
//* */
//**/
//* */
//*SETTING UP THIS CATALOGUED PROCEDURE: */
//*------------------------------------- */
//*THE FOLLOWING SYMBOLIC PARAMETERS ARE USED IN THIS */
//*CATALOGUED PROCEDURE AND MUST BE CUSTOMIZED WHEN IT IS */
//*INSTALLED. THE MEANINGS OF THE PARAMETERS ARE AS */
//*FOLLOWS: */
//* */
//**/
//* */
//*SETTING UP THIS CATALOGUED PROCEDURE: */
//*------------------------------------- */
//*THE FOLLOWING SYMBOLIC PARAMETERS ARE USED IN THIS */
//*CATALOGUED PROCEDURE AND MUST BE CUSTOMIZED WHEN IT IS */
//*INSTALLED. THE MEANINGS OF THE PARAMETERS ARE AS */
//*FOLLOWS: */
//* */
//* */
//* &CREGSIZ - COMPILER REGION SIZE */
//* &INFILE - INPUT DATA SET */
//* &OUTFILE - OUTPUT DATA SET */
//* &OUTDCB - DCB FOR OUTPUT FILE */
//* &CPARM - COMPILER OPTIONS */
//* */
//* &VSCCHD - PREFIX FOR SYSTEM FILES */

 Copyright IBM Corp. 1992, 1994 163

//* &COMHD - PREFIX FOR COMMON LIBRARY */
//* &CVER - VERSION OF COMPILER */
//* &COMVER - VERSION OF COMMON LIBRARY */
//* &COMPL - C COMPILER MODULES */
//* &EDCMSGS - C COMPILER MESSAGES */
//* &LANG - MESSAGE LANGUAGE */
//* &COMLINK - COMMON DYNAMIC RUNTIME LIBRARY */
//* &CLINK - C DYNAMIC LIBRARY */
//* &EDCHDRS - C SYSTEM HEADERS */
//* &WORKDA - UNIT TYPE FOR WORK FILES */
//* &WRKSPC - SPACE ALLOCATED FOR WORK FILES */
//* &DCB80 - DCB FOR LRECL OF 80 */
//* &DCB3200 - DCB FOR LRECL OF 3200 */
//* &SYSOUT1 - COMPILER OUTPUT */
//* &SYSOUT6 - COMPILER LISTING */
//* */
//* THE SYMBOLIC PARAMETERS DIRECTLY FOLLOW THIS COMMENT */
//*BLOCK AND MOST LIKELY REQUIRE CUSTOMIZATION BY YOUR */
//*INSTALLATION. */
//* */
//**/
//EDCC PROC CREGSIZ=′1536K′ ,
// INFILE=,
// OUTFILE=′&&LOADSET,DISP=(MOD,PASS),UNIT=VIO,SPACE=(80,(250,100))′ ,
// CPARM=,
//*--
// VSCCHD=′ EDC.′ ,
// COMHD=′ PLI.′ ,
// CVER=′ V2R1M0.′ ,
// COMVER=′ V2R3M0.′ ,
// COMPL=′ SEDCCOMP′ ,
// EDCMSGS=′ SEDCMSGS′ ,
// LANG=′ EDCMSGE′ ,
// COMLINK=′ SIBMLINK′ ,
// CLINK=′ SEDCLINK′ ,
// EDCHDRS=′ SEDCHDRS′ ,
//*--
// WORKDA=′ VIO′ ,
// WRKSPC=′(32000,(30,30))′ ,
// OUTDCB=′ (RECFM=FB,LRECL=80,BLKSIZE=3200)′ ,
// DCB80=′ (RECFM=FB,LRECL=80,BLKSIZE=3200)′ ,
// DCB3200=′ (RECFM=FB,LRECL=3200,BLKSIZE=12800)′ ,
//*---
// SYSOUT1=′ *′ ,
// SYSOUT6=′ *′
//*---
//* COMPILE STEP:
//*--
//COMPILE EXEC PGM=EDCCOMP,PARM=(,
// ′&CPARM′) , REGION=&CREGSIZ
//STEPLIB DD DSN=&VSCCHD&CVER&CLINK,DISP=SHR
// DD DSN=&COMHD&COMVER&COMLINK,DISP=SHR
// DD DSN=&VSCCHD&CVER&COMPL,DISP=SHR
//SYSMSGS DD DSN=&VSCCHD&CVER&EDCMSGS(&LANG),DISP=SHR
//SYSIN DD DSN=&INFILE,DISP=SHR
//SYSLIB DD DSN=&VSCCHD&CVER&EDCHDRS,DISP=SHR
//SYSLIN DD DSN=&OUTFILE,DCB=&OUTDCB
//SYSPRINT DD SYSOUT=&SYSOUT1
//SYSCPRT DD SYSOUT=&SYSOUT6

164 X Window System Guide

//SYSUT1 DD DSN=&&SYSUT1,UNIT=&WORKDA,DISP=(NEW,DELETE),
// SPACE=&WRKSPC,DCB=&DCB80
//SYSUT4 DD DSN=&&SYSUT4,UNIT=&WORKDA,DISP=(NEW,DELETE),
// SPACE=&WRKSPC,DCB=&DCB80
//SYSUT5 DD DSN=&&SYSUT5,UNIT=&WORKDA,DISP=(NEW,DELETE),
// SPACE=&WRKSPC,DCB=&DCB3200
//SYSUT6 DD DSN=&&SYSUT6,UNIT=&WORKDA,DISP=(NEW,DELETE),
// SPACE=&WRKSPC,DCB=&DCB3200
//SYSUT7 DD DSN=&&SYSUT7,UNIT=&WORKDA,DISP=(NEW,DELETE),
// SPACE=&WRKSPC,DCB=&DCB3200
//SYSUT8 DD DSN=&&SYSUT8,UNIT=&WORKDA,DISP=(NEW,DELETE),
// SPACE=&WRKSPC,DCB=&DCB3200
//SYSUT9 DD DSN=&&SYSUT9,UNIT=&WORKDA,DISP=(NEW,DELETE),
// SPACE=&WRKSPC,DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=&SYSOUT6
//*

A.2 C/370 Linkage Editor Catalogued Procedure EDCL
//* ***/
//* EDCL * */
//* ********* C/370 -- MVS */
//* VERSION 2, RELEASE 1, MODIFICATION 0 */
//* */
//* 5688-188 (C) COPYRIGHT IBM CORP. 1988, 1991. */
//* */
//* */
//* EDCL --- THIS CATALOGUED PROCEDURE LINK-EDITS */
//* A PROGRAM TO THE C LIBRARIES */
//* */
//* ***/
//* */
//* SETTING UP THIS CATALOGUED PROCEDURE: */
//* ------------------------------------- */
//* THE FOLLOWING SYMBOLIC PARAMETERS ARE USED IN THIS */
//* CATALOGUED PROCEDURE AND MUST BE CUSTOMIZED WHEN IT IS */
//* INSTALLED. THE MEANINGS OF THE PARAMETERS ARE AS */
//* FOLLOWS: */
//* */
//* &SYSOUT4 - LINKAGE EDITOR DIAGNOSTIC OUTPUT */
//* */
//* &LPARM - LINKAGE EDITOR OPTIONS */
//* &VSCCHD - PREFIX FOR SYSTEM FILES */
//* &COMHD - PREFIX FOR COMMON LIBRARY */
//* &WORKDA - UNIT TYPE FOR WORK FILES */
//* &COMVER - VERSION OF COMMON LIBRARY */
//* &CVER - VERSION OF C LIBRARY 1 */
//* &CBASE - C-LIBRARY STUBS */
//* &COMBASE - COMMON LIBRARY STUBS */
//* &LKMOD - DATASET FOR LOAD MODULE */
//* &LKDISP - DISPOSITION FOR LOAD MODULE */
//* */
//* ***/
//EDCL PROC LPARM=′ AMODE=31,MAP′ ,
// INFILE=,
// OUTFILE=′&&GSET(GO),DISP=(MOD,PASS),UNIT=VIO,SPACE=(512,(50,20,1))′ ,
// VSCCHD=′ EDC.′ ,
// CVER=′ V2R1M0.′ ,

Appendix A. MVS C/370 Catalogued Procedures 165

// CBASE=′ SEDCBASE′ ,
// COMHD=′ PLI.′ ,
// COMVER=′ V2R3M0.′ ,
// COMBASE=′ SIBMBASE′ ,
// WORKDA=VIO,
// WRKSPC=′(32000,(30,30))′ ,
// LKDISP=′ (NEW,PASS)′ ,
// SYSOUT=′ *′
//*---
//* LINKEDIT STEP:
//*---
//LKED EXEC PGM=IEWL,PARM=′&LPARM′
//SYSLIB DD DSN=&VSCCHD&CVER&CBASE,DISP=(SHR,PASS)
// DD DSN=&COMHD&COMVER&COMBASE,DISP=(SHR,PASS)
//SYSLIN DD DSN=&INFILE,DISP=SHR
//SYSLMOD DD DSN=&OUTFILE
//SYSPRINT DD SYSOUT=&SYSOUT
//SYSUT1 DD DSN=&&SYSUT1,UNIT=&WORKDA,DISP=&LKDISP,SPACE=&WRKSPC

166 X Window System Guide

Appendix B. Supplied Application Resource File Definitions for
XCALC

XCalc*Cursor: hand2
XCalc.toplevel.icon_name: Calculator
XCalc*iconPixmap: xcalc.bm
XCalc*Font: *-helvetica-medium-r-normal--*-100-*-*-*-*-*-*
XCalc*bevel.screen.LCD.Font: *-helvetica-bold-r-normal--*-120-*-*-*-*-*-*

XCalc*bevel.Background: black
XCalc*bevel.horizDistance: 25
XCalc*bevel.vertDistance: 6

XCalc*bevel.screen.horizDistance: 6
XCalc*bevel.screen.vertDistance: 2
XCalc*bevel.screen.defaultDistance: 0

XCalc*bevel.screen.Label.horizDistance: 0
XCalc*bevel.screen.Label.vertDistance: 0
XCalc*bevel.screen.Label.internalHeight: 1
XCalc*bevel.screen.Label.internalWidth: 1

XCalc*bevel.screen.LCD.Label: 88888888888
XCalc*bevel.screen.LCD.fromHoriz: M
XCalc*bevel.screen.LCD.horizDistance: 0
XCalc*bevel.screen.LCD.vertDistance: 0

XCalc*bevel.screen.INV.fromVert: M
XCalc*bevel.screen.INV.vertDistance: 4

XCalc*bevel.screen.DEG.fromHoriz: INV
XCalc*bevel.screen.DEG.fromVert: LCD
XCalc*bevel.screen.DEG.horizDistance: 1

XCalc*bevel.screen.RAD.fromHoriz: DEG
XCalc*bevel.screen.RAD.fromVert: LCD

XCalc*bevel.screen.GRAD.fromHoriz: RAD
XCalc*bevel.screen.GRAD.fromVert: LCD

XCalc*bevel.screen.P.Label: ()
XCalc*bevel.screen.P.fromHoriz: GRAD
XCalc*bevel.screen.P.fromVert: LCD
XCalc*bevel.screen.P.horizDistance: 2

XCalc*Command.horizDistance: 2
XCalc*Command.vertDistance: 4
XCalc*Command.width: 32
XCalc*Command.height: 15
XCalc*Command.internalWidth: 1
XCalc*Command.ShapeStyle: Oval

XCalc.ti.Geometry: 171x252
XCalc.ti.bevel.screen.LCD.width: 100
XCalc.ti.bevel.screen.LCD.ShapeStyle: rectangle

XCalc.ti.bevel.screen.LCD.Translations: #replace\n\

 Copyright IBM Corp. 1992, 1994 167

Ctrl<Key>c:quit()\n\
Ctrl<Key>h:clear()\n\
None<Key>0:digit(0)\n\
None<Key>1:digit(1)\n\
None<Key>2:digit(2)\n\
None<Key>3:digit(3)\n\
None<Key>4:digit(4)\n\
None<Key>5:digit(5)\n\
None<Key>6:digit(6)\n\
None<Key>7:digit(7)\n\
None<Key>8:digit(8)\n\
None<Key>9:digit(9)\n\
<Key>KP_0:digit(0)\n\
<Key>KP_1:digit(1)\n\
<Key>KP_2:digit(2)\n\
<Key>KP_3:digit(3)\n\
<Key>KP_4:digit(4)\n\
<Key>KP_5:digit(5)\n\
<Key>KP_6:digit(6)\n\
<Key>KP_7:digit(7)\n\
<Key>KP_8:digit(8)\n\
<Key>KP_9:digit(9)\n\
<Key>KP_Enter:equal()\n\
<Key>KP_Equal:equal()\n\
<Key>KP_Multiply:multiply()\n\
<Key>KP_Add:add()\n\
<Key>KP_Subtract:subtract()\n\
<Key>KP_Decimal:decimal()\n\
<Key>KP_Divide:divide()\n\
<Key>KP_Tab:equal()\n\
<Key>Clear:clear()\n\
<Key>.:decimal()\n\
<Key>+:add()\n\
<Key>-:subtract()\n\
<Key>*:multiply()\n\
<Key>/:divide()\n\
<Key>(:leftParen()\n\
<Key>):rightParen()\n\
<Key>!:factorial()\n\
<Key>e:e()\n\
<Key>:power()\n\
<Key>p:pi()\n\
<Key>i:inverse()\n\
<Key>s:sine()\n\
<Key>c:cosine()\n\
<Key>t:tangent()\n\
<Key>d:degree()\n\
<Key>l:naturalLog()\n\
<Key>=:equal()\n\
<Key>n:negate()\n\
<Key>r:squareRoot()\n\
<Key>space:clear()\n\
<Key>q:quit()\n\
<Key>Delete:clear()\n\
<Key>BackSpace:clear()\n\
<Btn1Down>,<Btn1Up>:toggle()selection()\n

168 X Window System Guide

XCalc.ti.button1.Label: 1/x
XCalc.ti.button1.Translations: #override<Btn1Up>:reciprocal()unset()
XCalc.ti.button2.Label x2
XCalc.ti.button2.Translations: #override<Btn1Up>:square()unset()
XCalc.ti.button3.Label: SQRT
XCalc.ti.button3.Translations: #override<Btn1Up>:squareRoot()unset()
XCalc.ti.button4.Label: CE/C
XCalc.ti.button4.Translations: #override<Btn1Up>:clear()unset()
XCalc.ti.button5.Label: AC
XCalc.ti.button5.Translations: #override<Btn1Up>:off()unset()\n\

<Btn3Up>:quit()

XCalc.ti.button6.Label: INV
XCalc.ti.button6.Translations: #override<Btn1Up>:inverse()unset()
XCalc.ti.button7.Label: sin
XCalc.ti.button7.Translations: #override<Btn1Up>:sine()unset()
XCalc.ti.button8.Label: cos
XCalc.ti.button8.Translations: #override<Btn1Up>:cosine()unset()
XCalc.ti.button9.Label: tan
XCalc.ti.button9.Translations: #override<Btn1Up>:tangent()unset()
XCalc.ti.button10.Label: DRG
XCalc.ti.button10.Translations: #override<Btn1Up>:degree()unset()

XCalc.ti.button11.Label: e
XCalc.ti.button11.Translations: #override<Btn1Up>:e()unset()
XCalc.ti.button12.Label: EE
XCalc.ti.button12.Translations: #override<Btn1Up>:scientific()unset()
XCalc.ti.button13.Label: log
XCalc.ti.button13.Translations: #override<Btn1Up>:logarithm()unset()
XCalc.ti.button14.Label: ln
XCalc.ti.button14.Translations: #override<Btn1Up>:naturalLog()unset()
XCalc.ti.button15.Label: yx
XCalc.ti.button15.Translations: #override<Btn1Up>:power()unset()

XCalc.ti.button16.Label: PI
XCalc.ti.button16.Translations: #override<Btn1Up>:pi()unset()
XCalc.ti.button17.Label: x!
XCalc.ti.button17.Translations: #override<Btn1Up>:factorial()unset()
XCalc.ti.button18.Label: (
XCalc.ti.button18.Translations: #override<Btn1Up>:leftParen()unset()
XCalc.ti.button19.Label:)
XCalc.ti.button19.Translations: #override<Btn1Up>:rightParen()unset()
XCalc.ti.button20.Label: /
XCalc.ti.button20.Translations: #override<Btn1Up>:divide()unset()

XCalc.ti.button21.Label: STO
XCalc.ti.button21.Translations: #override<Btn1Up>:store()unset()
XCalc.ti.button22.Label: 7
XCalc.ti.button22.Translations: #override<Btn1Up>:digit(7)unset()
XCalc.ti.button23.Label: 8
XCalc.ti.button23.Translations: #override<Btn1Up>:digit(8)unset()
XCalc.ti.button24.Label: 9
XCalc.ti.button24.Translations: #override<Btn1Up>:digit(9)unset()
XCalc.ti.button25.Label: *
XCalc.ti.button25.Translations: #override<Btn1Up>:multiply()unset()

XCalc.ti.button26.Label: RCL
XCalc.ti.button26.Translations: #override<Btn1Up>:recall()unset()
XCalc.ti.button27.Label: 4

Appendix B. Supplied Application Resource File Definitions for XCALC 169

XCalc.ti.button27.Translations: #override<Btn1Up>:digit(4)unset()
XCalc.ti.button28.Label: 5
XCalc.ti.button28.Translations: #override<Btn1Up>:digit(5)unset()
XCalc.ti.button29.Label: 6
XCalc.ti.button29.Translations: #override<Btn1Up>:digit(6)unset()
XCalc.ti.button30.Label: -
XCalc.ti.button30.Translations: #override<Btn1Up>:subtract()unset()

XCalc.ti.button31.Label: SUM
XCalc.ti.button31.Translations: #override<Btn1Up>:sum()unset()
XCalc.ti.button32.Label: 1
XCalc.ti.button32.Translations: #override<Btn1Up>:digit(1)unset()
XCalc.ti.button33.Label: 2
XCalc.ti.button33.Translations: #override<Btn1Up>:digit(2)unset()
XCalc.ti.button34.Label: 3
XCalc.ti.button34.Translations: #override<Btn1Up>:digit(3)unset()
XCalc.ti.button35.Label: +
XCalc.ti.button35.Translations: #override<Btn1Up>:add()unset()

XCalc.ti.button36.Label: EXC
XCalc.ti.button36.Translations: #override<Btn1Up>:exchange()unset()
XCalc.ti.button37.Label: 0
XCalc.ti.button37.Translations: #override<Btn1Up>:digit(0)unset()
XCalc.ti.button38.Label: .
XCalc.ti.button38.Translations: #override<Btn1Up>:decimal()unset()
XCalc.ti.button39.Label: +/-
XCalc.ti.button39.Translations: #override<Btn1Up>:negate()unset()
XCalc.ti.button40.Label: =
XCalc.ti.button40.Translations: #override<Btn1Up>:equal()unset()

XCalc.ti.button1.horizDistance: 4
XCalc.ti.button1.fromVert: bevel
XCalc.ti.button2.fromHoriz: button1
XCalc.ti.button2.fromVert: bevel
XCalc.ti.button3.fromHoriz: button2
XCalc.ti.button3.fromVert: bevel
XCalc.ti.button4.fromHoriz: button3
XCalc.ti.button4.fromVert: bevel
XCalc.ti.button5.fromHoriz: button4
XCalc.ti.button5.fromVert: bevel

XCalc.ti.button6.horizDistance: 4
XCalc.ti.button6.fromVert: button1
XCalc.ti.button7.fromHoriz: button6
XCalc.ti.button7.fromVert: button2
XCalc.ti.button8.fromHoriz: button7
XCalc.ti.button8.fromVert: button3
XCalc.ti.button9.fromHoriz: button8
XCalc.ti.button9.fromVert: button4
XCalc.ti.button10.fromHoriz: button9
XCalc.ti.button10.fromVert: button5

XCalc.ti.button11.horizDistance: 4
XCalc.ti.button11.fromVert: button6
XCalc.ti.button12.fromHoriz: button11
XCalc.ti.button12.fromVert: button7
XCalc.ti.button13.fromHoriz: button12
XCalc.ti.button13.fromVert: button8

170 X Window System Guide

XCalc.ti.button14.fromHoriz: button13
XCalc.ti.button14.fromVert: button9
XCalc.ti.button15.fromHoriz: button14
XCalc.ti.button15.fromVert: button10

XCalc.ti.button16.horizDistance: 4
XCalc.ti.button16.fromVert: button11
XCalc.ti.button17.fromHoriz: button16
XCalc.ti.button17.fromVert: button12
XCalc.ti.button18.fromHoriz: button17
XCalc.ti.button18.fromVert: button13
XCalc.ti.button19.fromHoriz: button18
XCalc.ti.button19.fromVert: button14
XCalc.ti.button20.fromHoriz: button19
XCalc.ti.button20.fromVert: button15

XCalc.ti.button21.horizDistance: 4
XCalc.ti.button21.fromVert: button16
XCalc.ti.button22.fromHoriz: button21
XCalc.ti.button22.fromVert: button17
XCalc.ti.button23.fromHoriz: button22
XCalc.ti.button23.fromVert: button18
XCalc.ti.button24.fromHoriz: button23
XCalc.ti.button24.fromVert: button19
XCalc.ti.button25.fromHoriz: button24
XCalc.ti.button25.fromVert: button20

XCalc.ti.button26.horizDistance: 4
XCalc.ti.button26.fromVert: button21
XCalc.ti.button27.fromHoriz: button26
XCalc.ti.button27.fromVert: button22
XCalc.ti.button28.fromHoriz: button27
XCalc.ti.button28.fromVert: button23
XCalc.ti.button29.fromHoriz: button28
XCalc.ti.button29.fromVert: button24
XCalc.ti.button30.fromHoriz: button29
XCalc.ti.button30.fromVert: button25

XCalc.ti.button31.horizDistance: 4
XCalc.ti.button31.fromVert: button26
XCalc.ti.button32.fromHoriz: button31
XCalc.ti.button32.fromVert: button27
XCalc.ti.button33.fromHoriz: button32
XCalc.ti.button33.fromVert: button28
XCalc.ti.button34.fromHoriz: button33
XCalc.ti.button34.fromVert: button29
XCalc.ti.button35.fromHoriz: button34
XCalc.ti.button35.fromVert: button30

XCalc.ti.button36.horizDistance: 4
XCalc.ti.button36.fromVert: button31
XCalc.ti.button37.fromHoriz: button36
XCalc.ti.button37.fromVert: button32
XCalc.ti.button38.fromHoriz: button37
XCalc.ti.button38.fromVert: button33
XCalc.ti.button39.fromHoriz: button38
XCalc.ti.button39.fromVert: button34
XCalc.ti.button40.fromHoriz: button39
XCalc.ti.button40.fromVert: button35

Appendix B. Supplied Application Resource File Definitions for XCALC 171

XCalc.hp.Geometry: 336x164
XCalc.hp.bevel.screen.LCD.width: 180

XCalc.hp.bevel.screen.LCD.Translations: #replace\n\
Ctrl<Key>c:quit()\n\
Ctrl<Key>h:back()\n\
None<Key>0:digit(0)\n\
None<Key>1:digit(1)\n\
None<Key>2:digit(2)\n\
None<Key>3:digit(3)\n\
None<Key>4:digit(4)\n\
None<Key>5:digit(5)\n\
None<Key>6:digit(6)\n\
None<Key>7:digit(7)\n\
None<Key>8:digit(8)\n\
None<Key>9:digit(9)\n\
<Key>KP_0:digit(0)\n\
<Key>KP_1:digit(1)\n\
<Key>KP_2:digit(2)\n\
<Key>KP_3:digit(3)\n\
<Key>KP_4:digit(4)\n\
<Key>KP_5:digit(5)\n\
<Key>KP_6:digit(6)\n\
<Key>KP_7:digit(7)\n\
<Key>KP_8:digit(8)\n\
<Key>KP_9:digit(9)\n\
<Key>KP_Enter:enter()\n\
<Key>KP_Multiply:multiply()\n\
<Key>KP_Add:add()\n\
<Key>KP_Subtract:subtract()\n\
<Key>KP_Decimal:decimal()\n\
<Key>KP_Divide:divide()\n\
<Key>.:decimal()\n\
<Key>+:add()\n\
<Key>-:subtract()\n\
<Key>*:multiply()\n\
<Key>/:divide()\n\
<Key>!:factorial()\n\
<Key>e:e()\n\
<Key>:power()\n\
<Key>p:pi()\n\
<Key>i:inverse()\n\
<Key>s:sine()\n\
<Key>c:cosine()\n\
<Key>t:tangent()\n\
<Key>d:degree()\n\
<Key>l:naturalLog()\n\
<Key>n:negate()\n\
<Key>r:squareRoot()\n\
<Key>space:clear()\n\
<Key>q:quit()\n\
<Key>Delete:back()\n\
<Key>Return:enter()\n\
<Key>Linefeed:enter()\n\
<Key>x:XexchangeY()\n\

172 X Window System Guide

<Key>BackSpace:back()\n\
<Btn1Down>,<Btn1Up>:toggle()selection()\n

XCalc.hp.button1.Label: SQRT
XCalc.hp.button1.Translations: #override<Btn1Up>:squareRoot()unset()
XCalc.hp.button2.Label: ex
XCalc.hp.button2.Translations: #override<Btn1Up>:epower()unset()
XCalc.hp.button3.Label: 10x
XCalc.hp.button3.Translations: #override<Btn1Up>:tenpower()unset()
XCalc.hp.button4.Label: yx
XCalc.hp.button4.Translations: #override<Btn1Up>:power()unset()
XCalc.hp.button5.Label: 1/x
XCalc.hp.button5.Translations: #override<Btn1Up>:reciprocal()unset()
XCalc.hp.button6.Label: CHS
XCalc.hp.button6.Translations: #override<Btn1Up>:negate()unset()
XCalc.hp.button7.Label: 7
XCalc.hp.button7.Translations: #override<Btn1Up>:digit(7)unset()
XCalc.hp.button8.Label: 8
XCalc.hp.button8.Translations: #override<Btn1Up>:digit(8)unset()
XCalc.hp.button9.Label: 9
XCalc.hp.button9.Translations: #override<Btn1Up>:digit(9)unset()
XCalc.hp.button10.Label: /
XCalc.hp.button10.Translations: #override<Btn1Up>:divide()unset()

XCalc.hp.button11.Label: x!
XCalc.hp.button11.Translations: #override<Btn1Up>:factorial()unset()
XCalc.hp.button12.Label: PI
XCalc.hp.button12.Translations: #override<Btn1Up>:pi()unset()
XCalc.hp.button13.Label: sin
XCalc.hp.button13.Translations: #override<Btn1Up>:sine()unset()
XCalc.hp.button14.Label: cos
XCalc.hp.button14.Translations: #override<Btn1Up>:cosine()unset()
XCalc.hp.button15.Label: tan
XCalc.hp.button15.Translations: #override<Btn1Up>:tangent()unset()
XCalc.hp.button16.Label: EEX
XCalc.hp.button16.Translations: #override<Btn1Up>:scientific()unset()
XCalc.hp.button17.Label: 4
XCalc.hp.button17.Translations: #override<Btn1Up>:digit(4)unset()
XCalc.hp.button18.Label: 5
XCalc.hp.button18.Translations: #override<Btn1Up>:digit(5)unset()
XCalc.hp.button19.Label: 6
XCalc.hp.button19.Translations: #override<Btn1Up>:digit(6)unset()
XCalc.hp.button20.Label: *
XCalc.hp.button20.Translations: #override<Btn1Up>:multiply()unset()

XCalc.hp.button21.Label:
XCalc.hp.button22.Label:
XCalc.hp.button23.Label: Rv
XCalc.hp.button23.Translations: #override<Btn1Up>:roll()unset()
XCalc.hp.button24.Label: x:y
XCalc.hp.button24.Translations: #override<Btn1Up>:XexchangeY()unset()
XCalc.hp.button25.Label: <-
XCalc.hp.button25.Translations: #override<Btn1Up>:back()unset()
XCalc.hp.button26.Label: ENTR
XCalc.hp.button26.Translations: #override<Btn1Up>:enter()unset()
XCalc.hp.button27.Label: 1
XCalc.hp.button27.Translations: #override<Btn1Up>:digit(1)unset()

Appendix B. Supplied Application Resource File Definitions for XCALC 173

XCalc.hp.button28.Label: 2
XCalc.hp.button28.Translations: #override<Btn1Up>:digit(2)unset()
XCalc.hp.button29.Label: 3
XCalc.hp.button29.Translations: #override<Btn1Up>:digit(3)unset()
XCalc.hp.button30.Label: -
XCalc.hp.button30.Translations: #override<Btn1Up>:subtract()unset()

XCalc.hp.button31.Label: ON
XCalc.hp.button31.Translations: #override<Btn1Up>:off()unset()\n\

<Btn3Up>:quit()
XCalc.hp.button32.Label: DRG
XCalc.hp.button32.Translations: #override<Btn1Up>:degree()unset()
XCalc.hp.button33.Label: INV
XCalc.hp.button33.Translations: #override<Btn1Up>:inverse()unset()
XCalc.hp.button34.Label: STO
XCalc.hp.button34.Translations: #override<Btn1Up>:store()unset()
XCalc.hp.button35.Label: RCL
XCalc.hp.button35.Translations: #override<Btn1Up>:recall()unset()
XCalc.hp.button36.Label: 0
XCalc.hp.button36.Translations: #override<Btn1Up>:digit(0)unset()
XCalc.hp.button37.Label: .
XCalc.hp.button37.Translations: #override<Btn1Up>:decimal()unset()
XCalc.hp.button38.Label: SUM
XCalc.hp.button38.Translations: #override<Btn1Up>:sum()unset()
XCalc.hp.button39.Label: +
XCalc.hp.button39.Translations: #override<Btn1Up>:add()unset()

XCalc.hp.button1.horizDistance: 4
XCalc.hp.button1.fromVert: bevel
XCalc.hp.button2.fromHoriz: button1
XCalc.hp.button2.fromVert: bevel
XCalc.hp.button3.fromHoriz: button2
XCalc.hp.button3.fromVert: bevel
XCalc.hp.button4.fromHoriz: button3
XCalc.hp.button4.fromVert: bevel
XCalc.hp.button5.fromHoriz: button4
XCalc.hp.button5.fromVert: bevel
XCalc.hp.button6.fromHoriz: button5
XCalc.hp.button6.fromVert: bevel
XCalc.hp.button7.fromHoriz: button6
XCalc.hp.button7.fromVert: bevel
XCalc.hp.button8.fromHoriz: button7
XCalc.hp.button8.fromVert: bevel
XCalc.hp.button9.fromHoriz: button8
XCalc.hp.button9.fromVert: bevel
XCalc.hp.button10.fromHoriz: button9
XCalc.hp.button10.fromVert: bevel

XCalc.hp.button11.horizDistance: 4
XCalc.hp.button11.fromVert: button1
XCalc.hp.button12.fromHoriz: button11
XCalc.hp.button12.fromVert: button2
XCalc.hp.button13.fromHoriz: button12
XCalc.hp.button13.fromVert: button3
XCalc.hp.button14.fromHoriz: button13
XCalc.hp.button14.fromVert: button4
XCalc.hp.button15.fromHoriz: button14
XCalc.hp.button15.fromVert: button5

174 X Window System Guide

XCalc.hp.button16.fromHoriz: button15
XCalc.hp.button16.fromVert: button6
XCalc.hp.button17.fromHoriz: button16
XCalc.hp.button17.fromVert: button7
XCalc.hp.button18.fromHoriz: button17
XCalc.hp.button18.fromVert: button8
XCalc.hp.button19.fromHoriz: button18
XCalc.hp.button19.fromVert: button9
XCalc.hp.button20.fromHoriz: button19
XCalc.hp.button20.fromVert: button10

XCalc.hp.button21.horizDistance: 4
XCalc.hp.button21.fromVert: button11
XCalc.hp.button22.fromHoriz: button21
XCalc.hp.button22.fromVert: button12
XCalc.hp.button23.fromHoriz: button22
XCalc.hp.button23.fromVert: button13
XCalc.hp.button24.fromHoriz: button23
XCalc.hp.button24.fromVert: button14
XCalc.hp.button25.fromHoriz: button24
XCalc.hp.button25.fromVert: button15
XCalc.hp.button26.fromHoriz: button25
XCalc.hp.button26.fromVert: button16
XCalc.hp.button26.height: 36
XCalc.hp.button27.fromHoriz: button26
XCalc.hp.button27.fromVert: button17
XCalc.hp.button28.fromHoriz: button27
XCalc.hp.button28.fromVert: button18
XCalc.hp.button29.fromHoriz: button28
XCalc.hp.button29.fromVert: button19
XCalc.hp.button30.fromHoriz: button29
XCalc.hp.button30.fromVert: button20

XCalc.hp.button31.horizDistance: 4
XCalc.hp.button31.fromVert: button21
XCalc.hp.button32.fromHoriz: button31
XCalc.hp.button32.fromVert: button22
XCalc.hp.button33.fromHoriz: button32
XCalc.hp.button33.fromVert: button23
XCalc.hp.button34.fromHoriz: button33
XCalc.hp.button34.fromVert: button24
XCalc.hp.button35.fromHoriz: button34
XCalc.hp.button35.fromVert: button25
XCalc.hp.button36.fromHoriz: button26
XCalc.hp.button36.fromVert: button27
XCalc.hp.button37.fromHoriz: button36
XCalc.hp.button37.fromVert: button28
XCalc.hp.button38.fromHoriz: button37
XCalc.hp.button38.fromVert: button29
XCalc.hp.button39.fromHoriz: button38
XCalc.hp.button39.fromVert: button30

Appendix B. Supplied Application Resource File Definitions for XCALC 175

176 X Window System Guide

Appendix C. Information on Zapping the VM GXDEMOx Programs

If you made a copy of the existing named GDDM shared segment with a different
name for use by the X Window System GDDM interface modules, you must zap
the load modules for those products that will be used with the new GDDM
shared segment for the X Window System GDDM interface. This must also be
done for the supplied demonstration programs GMDEMO1, GMDEMO2,
GMDEMO3, GMDEMO4, GMDEMO4a, GMDEMO5, and GMDEMO6. This is to
point each load module to the name of the new GDDM shared segment that must
be accessed in order to use the X Window System GDDM interface.

You can use the following steps as a guide to zapping the GXDEMOx load
modules:

 1. On our VM system we have a production GDDM shared segment called
ADMXA230. When we installed the X Window System GDDM interface we
reinstalled a copy of this GDDM shared segment and called it GDDMXD.

Each GXDEMOx MODULE points to ADMXA230. In order to run each module
with the X Window System GDDM interface we zapped each GXDEMOx
MODULE to point to GDDMXD.

 2. You can zap a module using the ZAP command under VM. This command
can either accept input from the CMS command line or from an input file
called filename ZAP where filename can be any name you choose. We
recommend using an input file because it minimizes the chance of a typing
error.

Create a ZAP input file for each of the GXDEMOx modules on your A disk
and call them:

GMDEMO1 ZAP
GMDEMO2 ZAP
GMDEMO3 ZAP
GMDEMO4 ZAP
GMDEMO4A ZAP
GMDEMO5 ZAP
GMDEMO6 ZAP

The zap input file for GXDEMO1 is illustrated in Figure 111 on page 178. The
contents of the zap input files for the other modules will be the same except
for the module name.

In each zap input file, you must name the module you are going to zap (one
of GXDEMO1 to GXDEMO6), name the section of the module to be zapped (in
this case it will be ADMASSNV for each module), verify the contents of the
bytes you are going to replace, and specify the new byte values that will
replace the bytes that were verified. The starting location of the bytes to be
replaced is specified by an offset from the beginning of the ADMASSNV.

In the ZAP input file in Figure 111 on page 178 we verify that the contents of
the 8 bytes at offset 0000 is C1C4D4E7C1F2F3F0, which is the byte
representation of ADMXA230. We then replace these bytes, again at offset
0000 with C7C4C4D4E7C44040, which is the byte representation of GDDMXD.

 Copyright IBM Corp. 1992, 1994 177

NAME GXDEMO1 ADMASSNV
VER 0000 C1C4D4E7C1F2F3F0
REP 0000 C7C4C4D4E7C44040
DUMP GXDEMO1 ADMASSNV

Figure 111. Contents of the ZAP Input File GXDEMO1 ZAP

 3. Execute ZAP by typing the following command at the CMS command line:

ZAP MODULE (INPUT GXDEMOn

where GXDEMOn is the zap input file name.

178 X Window System Guide

Appendix D. Standard X Client Applications

appres: Prints the resources of a program, which a client would load from
various sources. Resources that are commented out are not printed.

bdftosnf: Converts .bdf (bitmap distribution format) font files into .snf (server
natural format) font files. .snf is the format X can access and is server specific.
The .bdf format is portable.

bitmap: Tool for creating and editing bitmaps.

listres: Lists the resources for the widgets.

mkfontdir: Creates the fonts.dir and fonts.alias files. fonts.dir contains the
names of all the font files stored in this directory either as file names or in the
XLFD format. It is the mapping between the font file name and the XLFD
description. The fonts.alias file (may be fonts.ali file) must be edited by hand. In
that file the logical name (alias) can be set for specific fonts. A physical font can
have more than one logical font name. The X server is searching in both files
when a client requests to load a specific font. To specify a font use either the
XLFD description (* as wild cards allowed) or the logical font name (alias). To
select the font for an application either use the XLFD description (fonts.dir) or the
alias name (fonts.alias) for that font.

mwm: The Motif window manager provides all of the standard window
management functions. This command will be started after the initialization of
the X server. You can start the mwm on any workstation that has implemented
the X server protocol and if a window manager is not running yet.

oclock: Displays the time of the day in analog form. This client uses the shape
extension, which supports no rectangular windows. Use it to test if your server
supports the shape extension, which is part of the X11R4 version.

resize: Program for use on systems that lack the ability to automatically notify
processes of window size changes.

showsnf: Displays the contents of font files in server natural fonts. Normally it
is used to check whether the font file has been corrupted.

xbiff: Displays a mailbox on the display and checks if mail has arrived. When
the user gets mail the flag raises and the background color changes.

xcalc: Scientific calculator that can emulate either a TI-30 or an HP-10C.

xclipboard: Used to collect and display text selections that are sent to the
clipboard by other clients.

xclock: Displays a clock either analog or digital on the display. This client uses
a rectangular window opposite to the oclock client.

xcutsel: Copies the current selection (marked text with left mouse button) into a
cut buffer. The user can use this selection and copy it into the cut buffer. It acts
as a bridge between applications that don′ t support selections. Unfortunately
this client doesn′ t work with the AIX/6000 InfoExplorer or with the OS/2
Presentation Manager.

 Copyright IBM Corp. 1992, 1994 179

xditview: Client that is used to display ditroff output in a window.

xdm: Provides the ″login services″ for X terminals and X servers. xdm uses the
xdmcp (X display manager control program) to communicate with servers. To
get an xdm session the server must have implemented the xdmcp protocol. xdm
provides the log in and password, authenticates the user and runs a session
which is customizable.

xdpyinfo: A very useful tool for displaying information about an X server.
Displays information about the color table, version, extensions, and other useful
information.

xedit: This client is a simple text editor for X.

xev: Prints contents of X events. An event may be pressing a key on the
keyboard, pressing a button or moving the mouse. It is an important tool that
helps you when you want to change the mapping of a keyboard.

xfd: Displays all printable characters of a font file.

xfontsel: A way to display the fonts known to your X server. For each font you
examine the full XLFD name is printed in the window. You can change the XLFD
name, and this affects the font that you see in the window.

xhost: Used to allow clients access to the X server. With this command you can
control the access of the client hosts. There is only an access control for hosts
and not for users. Normally the servers allow access only to programs running
on the same machine or from machines listed in the file /etc/Xn.hosts, where n
is the display number of the server.

xinit: Shell script to start the X server and some specific clients that the user
can customize.

xkill: Kills a client application. When the user starts the client without option
the program asks the user to select a window which is to be killed. Moving the
cursor to a window and pressing the button kills the selected client.

xload: Displays a periodically updated histogram of the system load average
(the client host).

xlogo: Displays the X Windows System logo.

xlsclients: Lists the client applications that are running on a display.

xlsfonts: Lists all fonts or all fonts on the server that match the pattern. The
font path must be set so that this client can show the fonts in the directory. The
output is the XLFD format. The font path can be shown by the xset command.

xlswins: Lists the window tree.

xmag: Client that allows you to magnify a portion of the screen. The content of
the portion will be shown magnified in another window.

xman: A very nice tool to show the man pages of the X client.

xmh: This is the X window interface to the mh message handling system.

180 X Window System Guide

xmodmap: Client for displaying and changing the map of the X keyboard time.

xpr: Prints an X window dump. It takes the output file produced by the xwd
client as input, converts it into a PostScript file, and prints the file on the printer.
The input can be scaled.

xprop: Shows the properties of an X window that you have selected.

xrdb: Is used to get or set the contents of the RESOURCE_MANAGER property
on the root window. xrdb loads the property into the server normally at startup.
In this way all the necessary information (where it is available to all clients) is
stored in the server. This solves the problem which existed in previous versions
of X that required you to maintain defaults files on every machine that you might
use.

xrefresh: Client that repaints your screen. Useful when system messages have
been displayed on the screen. This client sends a refresh event to everything on
the screen.

xset: Important tool to show and set various user preference options of the
display and keyboard. It sets the acceleration and threshold of the mouse,
controls the bell volume, sets the font path, and controls the screen saver.

xsetroot: Sets the color or bitmaps of a root window. This command doesn′ t
work on the OS/2 server for the X clients that are under control of Presentation
Manager and for which there is no root window on the OS/2 display.

xterm: This is a terminal emulator for the X Window System. It provides DEC
VT102 and Tektronix 4014 support. AIXwindows delivers the xterm source code.
AIXwindows Environment/6000 provides the aixterm client instead.

xwd: Stores window images in a specially formatted window dump file. This file
will be input for the xpr client. The target window is selected by clicking the
mouse button in the desired window. When the bell rings twice the dump has
been completed.

xwininfo: Displays information about windows.

xwud: Displays a file, created with the xwd command, on the screen. This
command is similar to the xpr command, which prints the output on the printer.

Appendix D. Standard X Client Applications 181

182 X Window System Guide

Appendix E. XEDIT Subcommands

Subcommands and further information to use the XEDIT editor:

• Command Buttons

− Quit

Quits the current editing session. If any changes have not been saved,
XEDIT displays a warning message, allowing the user to save the file.

− Save

If file backups are enabled (see ″Resources″), XEDIT stores a copy of the
original, unedited f i le in <pref ix>f i lename<suff ix>, then overwri tes the
filename with the contents of the edit window. The filename is retrieved
from the Text widget directly to the right of the Load button.

− Load

Loads the file named in the Text widget immediately to the right of this
button and displays it in the Edit window. If the currently displayed file
has been modified, a warning message will ask the user to save the
changes or to press Load again.

• Editing

The Athena Text widget is used for the three sections of this application that
allow text input, namely the Message window, the Edit window, and the
window to the right of the command buttons, in which a filename can be
entered.

The characters typed will go to the Text widget that the pointer is currently
over. If the pointer is not over a Text widget, then the keystrokes will have
no effect on the application. This is also true for the special key sequences
that pop-up dialog widgets; so, for example, typing CTRL-s in the filename
widget (next to the command buttons) will enable searching in that widget,
not the Edit window (edit widget).

Both the Message window and the Edit window will create a scrollbar if the
text to display is too large to fit in that window. Horizontal scrolling is not
allowed by default, but can be turned on through the Text widget ′s
resources.

The following list summarizes the editing commands recognized by XEDIT
(that is, by the Text widget).

Control-a Move to the beginning of the current line.

Control-b Move backward one character.

Control-d Delete the next character.

Control-e Move to the end of the current line.

Control-f Move forward one character.

Control-h or Delete the previous character.
Backspace

Control-j, New line.
Control-m,

 Copyright IBM Corp. 1992, 1994 183

Return, or
LineFeed

Control-k Kill the rest of this line. (Does not kill the
carriage return at the end of the line. To do so,
use Control-k twice. However, be aware that the
second kill overwrites the text line in the kill
buffer.)

Control-l Redraw the window. (Also scrolls text so the
cursor is positioned in the middle of the window.)

Control-n Move down to the next line.

Control-o Divide this line into two lines at this point and
move the cursor back up.

Control-p Move up to the previous line.

Control-r Search and replace backward.

Control-s Search and replace forward.

Control-t Transpose characters. (Swap the characters
immediately before and after the cursor.)

Control-u Perform next command four times. For example,
the sequence Control-u, Control-n moves the cursor
down four lines.

Control-v Move down to the next screen of text.

Control-w Kill the selected text.

Control-y Insert the last killed text. (If the last killed
text is a carriage return--see Control-k above--
a blank line is inserted.)

Control-z Scroll up the text one line.

Meta-< Move to the beginning of the file.

Meta-> Move to the end of the file.

Meta-• Move backward one paragraph.

Meta-‘ Move forward one paragraph.

Meta-b Move backward one word.

Meta-d Delete the next word.

Meta-D Kill the next word.

Meta-f Move forward one word.

Meta-h, Delete the previous word.
Meta-Backspace, or
Meta-Delete

184 X Window System Guide

Meta-H, Kill the previous word.
Meta-Shift-Backspace, or
Meta-Shift-Delete

Meta-i Insert a file. A dialog box will appear in which
you can type the desired filename.

Meta-k Kill to the end of the paragraph.

Meta-q Join lines to form a paragraph.

Meta-v Move up to the previous screen of text.

Meta-y Insert the last selected text here. This command
is the equivalent of clicking the second pointer
button. See Chapter 5, The xterm Terminal
Emulator, for more information about text
selections.

Meta-z Scroll down the text one line.

Delete Delete the previous character.

Note that a translation in the application defaults file overrides the
translation for the Return key for the text window in which a filename can be
entered (next to the command buttons); in this window only, instead of
starting a new line, Return moves the editing cursor to the end of the current
line.

Appendix E. XEDIT Subcommands 185

186 X Window System Guide

Glossary

bit plane . On a color display, each pixel has more
than one bit defined. Data in display memory can be
either pixels (multiple bits per pixel) or bit planes.
There is a 1-bit plane for each usable bit in the pixel.

bitmap . A pixmap with a depth of one bit plane.

client . An application program that connects to X
Windows server by an InterProcess Communication
(IPC) path, such as a Transmission Control Protocol
(TCP) connection or a shared memory buffer. The
program can be referred to as the client of the server,
but it is actually the IPC path itself. Programs with
multiple paths open to the server are viewed as
multiple clients by the protocol.

colorcell . An entry in a colormap that consists of
three values based on red, green, and blue
intensities. The values are 16-bit, unsigned numbers.
Zero represents the minimum intensity. The values
are scaled by the server to match the particular
display in use.

colormap . A set of colorcells. A pixel value indexes
the colormap to produce RGB-value intensities. A
colormap consists of a set of entries defining color
values that, when associated with a window, is used
to display the contents of the window. Depending on
hardware limitations, one or more colormaps can be
installed at one time, such that windows associated
with those maps display correct colors. Two classes
of colormaps are direct color and pseudocolor.

connection . The IPC path between the server and a
client program. A client program typically, but not
necessarily, has one connection to the server over
which requests and events are sent.

DBCS . (Double-Byte Character Set) A set of
characters in which each character is represented in
2 bytes of storage. Languages such as Japanese,
Chinese, and Korean, which contain more symbols
than can be represented by 256 code points, require
double-byte character sets. Because each character
requires 2 bytes, the typing, display, and printing of
DBCS characters requires hardware and programs
that support DBCS.

DECnet . Digital Equipment Corporation′s proprietary
network architecture.

depth . The number of bits per pixel for a window or
pixmap.

display . A set of one or more physical screens
driven by a single X server. The DISPLAY variable
tells the clients which server to connect to.

event . Information generated either asynchronously
from a device or as the side effect of a client request.
Events are grouped into types and are not sent to a
client by the server unless the client has issued a
specific request for information of that type. Events
are usually reported relative to a window.

font . A set of glyphs, usually characters. The
protocol does not translate or interpret character
sets. The client indicates values used to access the
glyph arrays. A font contains additional metric
information to determine inter-glyph and inter-l ine
spacing.

font directory . A directory where several font fi les
exist including the file fonts.dir which contains entries
for each font in the directory including the XLFD
convention for each fonts.

GDDM . (Graphical Data Display Manager) A group of
routines that allows pictures to be defined and
displayed procedurally through function routines that
correspond to graphic primitives.

GL . Graphics library.

glyph . (1) An image, usually of a character, in a font.
(2) A graphic symbol whose appearance conveys
information; for example, the vertical and horizontal
arrows on a cursor key that indicate the direction in
which they control cursor movement, the sunburst
symbol on the screen illumination control of a display
device.

graPHIGS . An implementation of PHIGS used by IBM
and based on the ANSI proposed standard,
Programmer ′s Hierarchical Interactive Graphics
System (PHIGS).

gray scale . A type of degenerate pseudocolor where
the red, green, and blue values in any given colormap
entry are equal, thus producing shades of gray.

GUI. (Graphical User Interface) A type of computer
interface consisting of a visual metaphor of a
real-world scene, often a desktop. Within that scene
are icons, representing actual objects, that the user
can access and manipulate with a pointing device.

icon . A graphic symbol, displayed on a screen, that a
user can point to with a device such as a mouse in
order to select a particular function or software
application. Synonymous with pictogram.

Intrinsics . A set of management mechanisms that
provides for constructing and interfacing between
composite widgets, their children, and other clients.
Also, provides the ability to organize a collection of
widgets into an application.

 Copyright IBM Corp. 1992, 1994 187

keycode . Number (between 8 and 255) which
represents a physical key on a keyboard. The
keycode is fixed for each key and cannot be changed.

keysym . (Key symbol) The name that represents the
label of a key. Keysyms are mapped to keycodes at
the server.

MBCS . (Multi Byte Character Set) A set of
characters in which each character is represented in
2 or more bytes of storage.

modifier . A logical keyname which represents
functions that are recognized by X programs. There
are 8 modifiers which can be assigned to a keycode
(Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4,
Mod5).

PEX. (PHIGS Extension to X). The 3-D extension to X
Windows.

pixel value . The number of bit planes used in a
particular window or pixmap. For a window, a pixel
value indexes a colormap and derives an actual color
to be displayed. A pixel is an N-bit value, where N is
the number of bit planes (the depth) used in a
particular window or pixmap.

pixmap . A data representation arranged in a
three-dimensional array of bits. A pixmap can be
thought of as a two-dimensional array of pixels, with
each pixel being a value from zero to 2 to the power
of (N-1), with N as the depth (Z-axis) of the pixmap.

plane . When a pixmap or window is thought of as a
stack of bitmaps, each bitmap is called a plane or bit
plane.

pointer . The device attached to the cursor and
tracked on the screen.

property . The name, type, data format, and data
associated with a window. By using properties,
clients and a window manager share information,
such as re-size hints, program names, and icon
formats. It is a general-purpose naming mechanism
for clients. The protocol does not interpret properties.

pseudocolor . A class of colormap in which a pixel
value indexes the colormap entry to produce
independent red, green, and blue intensity values.
That is, the colormap is viewed as an array of triples
(RGB values). The RGB values can be changed
dynamically.

resource . (1) Items such as windows, pixmaps,
cursors, fonts, and colormaps are known as
resources. Each has a unique identifier associated

with it for naming purposes. The lifetime of a
resource is bounded by the lifetime of the connection
over which the resource was created. (2) A named
piece of data in a widget that can be set by a client,
by an application, or by user defaults.

RGB . Color coding in which the brightness of the
additive primary colors of light, red, green, and blue,
are specified as three distinct values of white light.

RGB value . Red, green, and blue intensity values are
used to define a color. These values are always
represented as 16-bit unsigned numbers with zero,
the minimum intensity, and 65535, the maximum
intensity. The X server scales these values to match
the display hardware.

root window . Each screen has a root window
covering it. This window cannot be reconfigured or
unmapped, but otherwise performs like any other
window.

SBCS . (Single Byte Character Set) A set of
characters in which each character is represented in
one byte of storage.

screen . A server can provide several independent
screens that typically have physically independent
monitors (display screens). This is the expected
configuration when there is only a single keyboard
and pointer shared among the screens.

server . Provides the basic windowing mechanism. It
handles IPC connections from clients, de-multiplexes
graphics requests onto screens, and multiplexes input
back to clients.

widget . An object providing a user interface
abstraction; for example, a Scrollbar widget. It is the
combination of an X Windows window and its
associated semantics. Logically, it is a rectangle with
associated input and output semantics, although some
can be input-only or output-only.

window . A region on the server display created by a
client application. Windows can be manipulated by
using a window manager.

window manager . A client that allows the user to
move, re-size, circulate and iconize windows on the
display.

X Windows Toolkit . A collection of basic functions for
developing a variety of application environments.
Toolkit functions manage Toolkit initialization, widgets,
memory, events, geometry, input focus, selections,
resources, translation of events, pixmaps, and errors.

188 X Window System Guide

Index

A
AIX/6000

.mwmrc file 116

.Xdefaults file 99, 116

.Xkeyboard file 114
2D support 20
3D feature 20
access control 125
aixterm program 101
aixterm resource 101
AIXwindows Environment/6000

customizing 114
images for installation 38
initialization fi le 115
installation 38
start ing 113

application resource 99
application resource file 99
appres program 100
bitmap 117
client applications 97
client applications, building 97
client, starting 101
color 120
color database 121
color, customizing 121
colorcell 120
colormap 120
compiling and link-editing 97
default fonts directory 122
depth 120
font 122
fonts.alias file 122
fonts.dir file 122
frame buffer 120
GrayScale 120
image contents 41
keyboard mapping 123
keyboard mapping, customizing 124
keycode 124
keymap 123
keysym 124
make command 97
mkfontdir uti l i ty 123
mkfontsel uti l i ty 123
modif ier 124
Motif window manager 116
Motif window manager, restarting 116
mwm command 113
mwm keyword 116
mwmrc, customizing 116
pixel 120
PseudoColor 120
resource class 100

AIX/6000 (continued)
resource instance 100
rgb command 121
server resources 115
server, quitt ing 41
server, start ing 41
showsnf uti l i ty 123
smitty 39
visual 120
X 113
X0.hosts file 125
xev command 125
xfd uti l i ty 123
xhost command 125
xinit command 113
xinitrc fi le 113
xlsfonts uti l i ty 123
xmodmap uti l i ty 123
xrdb command 99, 115
xset uti l i ty 123
xterm program 101

application resource file 69, 103
Appres 104
Argus Project 1
Athena, Project 1

B
BDFTOPCF 142
Bibliography xix
bit-mapped graphic display 4

C
C programming language 3
CID 49
client 2
Clipboard 146
color 134

adding 137
Changing 136
color lookup table 9
colorcell 9
colormap 9
Customizing 149
Defining 134
depth of screen 9
pixel 9
RGB 9
visual class 9

Configuration notebook 126
Cursor Options 133
cut and paste 146
Cut buffers 146

 Copyright IBM Corp. 1992, 1994 189

D
DECNET 6
Developing applications 111
display 5, 6, 107
DISPLAY variable 45
DLL 107
DOS 50

CSD for TCP/IP 50
font 24
HCL-eXceed Plus 24
HCL-eXceed/W 24
installation 50
Microsoft Windows 24
window manager 24
X Window System server support 24

Dynamic link libraries 107

E
EDCC cataloged procedure 163
EDCL cataloged procedure 165
EDITRES 104
Environment Variables 45, 49
ETC variable 45
EXCEEDP 50

F
Font Server 143
fonts 150

average width 7
characterset 7
code set 7
font family 7
font file 7
foundry 7
horizontal resolution 7
pixel size 7
point size 7
set width 7
slant 7
spacing 7
style 7
vertical resolution 7
weight 7
X logical font description 7
XLFD 7

G
GDDM

ADMCHART
keyboard remapping under MVS 72
keyboard remapping under VM 89
starting under VM 89
under MVS 71
under VM 88
zapping under VM 88

GDDM (continued)
APL2

character codes changing under MVS 79
character codes changing under VM 96
character set toggle under MVS 77
character set toggle under VM 94
keyboard customizing under MVS 77
keyboard customizing under VM 94
keyboard mapping under MVS 76
keyboard mapping under VM 93

application resources, MVS 72
application resources, VM 90
character representation, MVS 77
character representation, VM 93
CMap resource, MVS 72
CMap resource, VM 90
Compr resource, VM 90
demonstration programs for VM, invoking 37
EZAADMLR module for MVS 28
GColornn resource, MVS 72
GColornn resource, VM 90
GDDMLIB data set for MVS 28
GDDMLOAD data set for MVS 28
GDDMXD clist for MVS 28
GDDMXD, invoking for VM 36
GDXALTCS PSS data set, MVS 31
GDXALTCS PSS file, VM 93
GDXALTCS.PSS data set, MVS 76
GDXAPLCS MAP file, VM 95
GDXAPLCS.MAP data set, MVS 78
GDXLIOX0 module for MVS 28
Geometry resource, MVS 72
Geometry resource, VM 90
GMCPnn resource, MVS 72
GMCPnn resource, VM 90
graphics display area, MVS 75
graphics display area, VM 91
HostRast resource, MVS 72
HostRast resource, VM 90
image processing routines, VM 35
image symbol editor, VM 35
INSTGDXD clist for MVS 28
INSTGDXD exec for VM 35
keyboard remapping, MVS 30
keyboard remapping, VM 37
keyboard under MVS, using 72
KEYCODE program, MVS 77, 94
keycode, MVS 76
keycode, VM 93
LINKLIB data set 28
modifier, MVS 77
modifier, VM 93
MVS 71
MVS demonstration programs 28
MVS demonstration programs, executing 30
MVS GDDM interface activation 29
MVS GDDM interface installation 28
MVS GDDM interface installation verification 29

190 X Window System Guide

GDDM (continued)
MVS GDDM support 12
MVS GDDMXD, invoking 29
PDTrace resource, VM 90
shared segment, defining for VM 34
shared segment, installing for VM 35
shared segment, VM 33, 87
VM GDDM interface activation 36
VM GDDM interface installation 33
VM GDDM interface installation verification 36
VM GDDM support 15
X DEFAULTS file, VM 90
X.DEFAULTS data set 73
XCIConn resource, MVS 72
XCIConn resource, VM 90
XSync resource, MVS 72
XSync resource, VM 90
zapping GDDM demonstration programs, VM 37
ZWL resource, MVS 72
ZWL resource, VM 90

glossary 187
GUI 1

H
HCL-eXceed Plus

access control 154
color 153
font 154
keyboard mapping 154
RGB database 153
visual class 153

HCL-eXceed/DOS 50
basic configuration 50
communication settings 51
customizing 153
general settings 52
input settings 51
installation 50
installation directory 50
Server commands 52
stopping 52
video and color settings 51
xconfigp 50, 153

HCL-eXceed/W 53
access control 153
access settings 57
basic configuration 55
color 149
color settings 57
communication settings 56
customizing 149
font 150
font settings 57
general settings 56
input settings 56
Installation 53
installation directory 53
Installing fonts 54

HCL-eXceed/W (continued)
installing local X clients 54
keyboard customizing 152
keyboard mapping 152
keycode 152
protocol settings 57
Requirements 54
selected configuration 54
start ing 57
stopping 58
Transport interface 53
user directory 53
video settings 56
visual 149

Hewlett-Packard 157
.Xdefaults file 158
.xload program 158
access control 159
ADMCHART, displaying 160
AIX X client 162
aixterm, displaying 162
application resource 158
application resource file 158
application run time options 158
client support 157
GDDM, displaying 160
hosts file 160
hpterm program 158
keyboard, remapping 161
keycode 160
keysym 160
MVS X client 160
server support 159
X Window System, starting 157
X0.hosts file 159
xmodmap command 161
xprkbd command 160

host 5
HP 9000 157
HP-UX 157

I
Installing from Code Server 49
intrinsics 4, 14

K
keyboard 5, 6, 11, 127

definit ion 127
remapping 128, 152

keyboard map 11
keycode 11
keysym 11

L
Listres 104

Index 191

M
MAZE 106
MIT 1
modif ier 11
mouse 6
mult ivendor 157
MVS 60

ADMCHART keyboard remapping 72
ADMCHART program 71
APL2 character codes, changing 79
APL2 character set, toggle 77
APL2 keyboard map, customizing 77
APL2 keyboard mapping 76
application considerations 59
application resource file 69
application resource file, building 69
Athena widget set 59, 62
C compiler 60
C linkage editor 61
C programming language 12
character representation 14, 77
client application samples 15
client display variable 26, 27
client display variable data set 27
client support 11, 12
compiling and link-editing 60
EBCDIC 14
EDCC cataloged procedure 163
EDCC JCL 60
EDCL cataloged procedure 165
EDCL JCL 61
external name 14
EZAADMLR module 28
GDDM

application resource 72
CMap resource 72
demonstration programs 28
demonstration programs, executing 30
GColornn resource 72
GDDMLIB data set 28
GDDMLOAD data set 28
GDDMXD clist 28
GDDMXD, invoking 29
Geometry resource 72
GMCPnn resource 72
graphics display area 75
HostRast resource 72
INSTGDXD clist 28
interface activation 29
interface installation 28
interface installation verif ication 29
keyboard remapping 30
SEZALINK data set 28
support 12
using 71
XCIConn resource 72
XSync resource 72
ZWL resource 72

MVS (continued)
GDXALTCS.PSS data set 31, 76
GDXAPLCS.MAP data set 78
GDXLIOX0 module 28
installation 25
installation verif ication 26
intrinsic 14
ISO Latin-1 14
keyboard, using 72
keycode 76
KEYCODE program 77
Libraries 60
link-edit for Athena widget set 63
link-edit for OSF/Motif widget set 64
link-edit for Xlib 61
LINKLIB data set 26, 28
MIT X clients 59, 66
modif ier 77
OSF/Motif widget set 59, 64
sample application source 59
sample X clients 26
target server display 26, 27
toolkit 14
widget set 14
X client API 12, 13
X protocol 14
X Window System components 13
X.DEFAULTS data set 69, 73
X11GLUE.H 14
XCALC, application resource file 68, 69
XCALC, compiling and link-editing 66
XCALC, running 68
XCLOCK, compiling and link-editing 66
XCLOCK, running 68
Xlib keyword 59, 60
XLOGO

application resource file 69
background 70
compiling and link-editing 66
foreground 70
height 70
resources 70
running 67
width 70

XSAMP1 program 26
XSAMP1, running 62
XSAMP1X source 59, 60
XSAMP2 program 26
XSAMP2 source 62
XSAMP2, running 64
XSAMP2X source 59
XSAMP3 program 26
XSAMP3 source 64
XSAMP3, running 66
XSAMP3X source 59

192 X Window System Guide

N
NLS 127

O
OCLOCK 106
OS/2 20, 42

access control 132
APIs 111
Application Resource File 103
BDFTOPCF utility 142
clients 105
color 134
color database 21
color, adding 137
color, changing 136
Cursor Options 133
developing applications 111
DLL 107
Environment Variables 45, 49
font 21, 138
font alias 140
font, adding 142
FONTS.ALI file 140
FONTS.DIR file 139
installation 42
Install ing 42
keyboard mapping 128
keycode 129
keysym 129
libraries 111
MKFONTDR utility 143
mouse 46
Overview 20
PMX 21
PMX parameters 126
Porting applications from UNIX 112
Presentation Manager 21
RGB value 136
RGB.TXT file 21, 134
server support 20
Syslevel 49
System Level 44
uti l i t ies 21, 105
window manager 21, 46
X Window Structure 22
X Window System components 21
X0HOSTS file 132
XFD utility 141
XHOST utility 133
XMODMAP util ity 128

OSF/Motif Kit 21, 46
Applications 105
developing applications 111
Install ing 46
Overview 21

Other Options 148

P
pixel 4
PMX 43

Clipboard 146
Configuration 126
Cursor Options 133
Keyboard Definition 127
Starting 46
Start ing automatical ly 44
Storage Requirements 43
Window Control 131

pointer 5, 6
Porting applications 112
Project Athena 1
Publications xix

R
resource 69
RGB 136, 149
RGB.TXT file 134

S
screen 5, 6
server 2, 5
socket 7
Syslevel 44, 49

T
TCP/IP 6

V
Viewres 104
visual class

DirectColor 10
GrayScale 10
PseudoColor 10
StaticColor 10
StaticGray 10
TrueColor 10

VM
ADMCHART keyboard remapping 89
ADMCHART program 88
ADMCHART, starting 89
APL2 character code, changing 96
APL2 character set, toggle 94
APL2 keyboard map, customizing 94
APL2 keyboard mapping 93
application considerations 80
application resource file 84
application resource file, building 84
Athena widget set 80, 82
BITMAP program 80
C compiler 83
C compiler, invoking 81
C linkage editor 83

Index 193

VM (continued)
C linkage editor, invoking 81
C programming language 15
character representation 17, 93
client support 15
compiling and link-editing 80
EBCDIC 17
external names 17
GDDM

application resources 90
CMap resource 90
Compr resource 90
demonstration programs, invoking 37
demonstration programs, zapping 177
GColornn resource 90
GDDMXD, invoking 36
Geometry resource 90
GMCPnn resource 90
graphics display area 91
HostRast resource 90
interface activation 36
interface installation 33
interface installation verif ication 36
keyboard remapping 37
PDTrace resource 90
shared segment 33, 87, 88
shared segment, defining 34
shared segment, installing 35
support 15
using 87
XCIConn resource 90
XSync resource 90
ZWL resource 90

GDXALTCS PSS file 93
GDXAPLCS MAP file 95
image processing routines 35
image symbol editor 35
installation 31
installation verif ication 31
INSTGDXD exec 35
intrinsic 17
ISO Latin-1 17
keycode 93
KEYCODE program 94
minidisk, accessing 31
minidisks 31
modif ier 93
OCLOCK program 80, 82
OCLOCK, starting 84
OSF/Motif widget set 80, 84
resource 84
sample clients 31
target server display 32
target X server display, identifying 81, 83
toolkit 17
widget set 17
X client API 15
X client application samples 18

VM (continued)
X client display variable 32, 81, 83
X DEFAULTS file 84, 90
X protocol 17
X Window System components 16
X11GLUE H 17
Xlib 16
Xlib keyword 80
XSAMP1 program 31
XSAMP1, compiling and link-editing 32
XSAMP2 program 31
XSAMP2, compiling and link-editing 32
XSAMP3 program 31
XSAMP3, compiling and link-editing 33
zapping ADMCHART 88
zapping GDDM demonstration programs 37

W
W windowing system 1
widget set

Athena Widget Set 4
Open Look Widget Set 4
OSF/Motif Widget Set 4

widgets 4
window 6
window manager 6

X
X 1
X application 3
X client 3
X client application 3, 59
X client display variable 5
X Consortium 2
X Library 23
X networking

event 6
X protocol 6

X server 4
X Terminal 5
X toolkit 4, 14
X Toolkit Intrinsics Library 23
X Window System 1
X Window System client 21, 46

Applications 105
developing applications 111
Install ing 46
Overview 21
Util i t ies 104

X Window System server 21
Overview 21

X0HOSTS file 132
XANT 106, 109
XAPPLRESDIR 49
XCALC 106, 109
XCALC application resource definitions 167

194 X Window System Guide

xcliset 104
XCLOCK 106
Xdefault 103
XEDIT 106, 108, 147
XENVIRONMENT 104
XEV 105
XEYES 106
XFD 105
XFILES variable 45
XFILESEARCHPATHX 49
XFONTSEL 105
XHOST 105
XHOST utility 133
XHW 106
XINIT 105
XKEYSYMDB 49
Xlib 3, 7, 23
XLOGO 106
XLSFONTS 105, 145
XMODMAP 105, 128
XMPIANO 106, 110
XPROP 105, 109
xrdb 104, 105
XSAMP1 62
XSAMP2. 62
XSAMP3 64
XSCOPE 105
XSET 105, 143
XSETROOT 106
Xstation 5
Xstation Manager 5
XSTDCMAP 105
Xt 4, 23
XWININFO 105, 108

Z
zap 88, 177

Index 195

ITSO Technical Bulletin Evaluation RED000

TCP/IP for MVS, VM, OS/2 and DOS
X Window System Guide

Publication No. GG24-3911-01

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
GG24-3911-01 IBML 

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 985, Building 657
P.O. BOX 12195
RESEARCH TRIANGLE PARK NC
USA 27709-2195

Fold and Tape Please do not staple Fold and Tape

GG24-3911-01

IBML 

Printed in U.S.A.

GG24-3911-01

	TCP/IP for MVS, VM, OS/2 and DOS X Window System Guide
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	Related Publications
	Prerequisite Publications
	Additional Publications
	International Technical Support Center Publications

	Acknowledgements
	Chapter 1. Introduction
	A Brief History
	X Concepts
	Client/ Server
	Client
	Server
	X Networking
	Fonts
	Colors
	Keyboard
	IBM X Window System Implementations
	MVS
	VM
	AIX/ 6000
	OS/ 2
	DOS

	Chapter 2. Installation
	ITSO Network Configuration
	MVS
	Installation Verification for the MVS X Window System API
	Installing the MVS X Window System GDDM Interface
	VM
	Installation Verification for the VM X Window System API
	Installing the VM X Window System GDDM Interface
	AIX
	Basic Installation
	AIXwindows Environment/ 6000 Images
	OS/ 2
	Setting Up OS/ 2 X Window System Server
	Installing PMX
	System Level
	Setting PMX to Start Automatically
	Setting Environment Variables
	Starting PMX
	Installing OS/ 2 X Window System Client and OS/ 2 OSF/ Motif Kits
	Requirements to Use X Window System Client and the OSF/ Motif Kit
	Installing the X Window System Client Files
	Installing the Programmer¢ s Toolkit
	Installing the OSF/ Motif Kit Files
	Installing from a Code Server
	DOS
	Installation and Basic Configuration for HCL- eXceed/ DOS
	Installation and Basic Configuration for HCL- eXceed/ W

	Chapter 3. X Client Application Considerations
	Under MVS
	Compiling and Link- Editing under MVS
	MVS Application Resource File
	Using GDDM Applications under MVS
	Under VM
	Compiling and Link- Editing Under VM
	VM Application Resource File
	Using GDDM Applications under VM
	Under AIX/ 6000
	Compiling and Linking under AIX/ 6000
	Customizing Application Resources under AIX/ 6000
	How to Start an AIX/ 6000 Client
	Running OS/ 2 X Window Clients and OS/ 2 OSF/ Motif Applications
	Application Resource File
	Running OS/ 2 X Window Clients and OSF/ Motif Applications
	Developing of X Window Client and OSF/ Motif Applications
	Tips for Porting Applications from UNIX

	Chapter 4. Customizing the X Server
	AIX/ 6000 X Server
	AIXwindows Environment/ 6000 V1.2
	Customizing Motif Window Manager
	Customizing Colors
	AIX/ 6000 X Fonts
	Remapping the Keyboard Under AIX/ 6000
	Controlling X Client Access to AIX/ 6000
	Interoperability
	Customizing PMX
	Using the Configuration Notebook Program to Configure PMX
	Keyboard Definition
	Window Control
	Controlling X Client Access to OS/ 2
	Cursor Options
	Customizing OS/ 2 Colors
	OS/ 2 X Fonts
	Using the PM Clipboard with PMX
	Other Options
	DOS
	Customizing HCL- eXceed/ W for Windows Version 3.3.3
	Customizing HCL- eXceed/ DOS for DOS

	Chapter 5. Multivendor Interoperability
	Hewlett- Packard
	Hewlett- Packard as a Client
	Hewlett- Packard as an X Server

	Appendix A. MVS C/370 Catalogued Procedures
	A.1 C/ 370 Compiler Catalogued Procedure EDCC
	A.2 C/ 370 Linkage Editor Catalogued Procedure EDCL

	Appendix B. Supplied Application Resource File Definitions for XCALC
	Appendix C. Information on Zapping the VM GXDEMOx Programs
	Appendix D. Standard X Client Applications
	Appendix E. XEDIT Subcommands
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N P
	O
	R
	S
	T
	V
	W
	X
	Z
	ITSO Technical Bulletin Evaluation RED000

